"C" Keywords - 119 Result(s)

 C

[Colorful]

Colorful titanium oxide pigments without transition metals

概要

Colorful TiO2 Particle
https://www.t-technoarch.co.jp/data/anken_en/T19-849.pdf

従来技術との比較

Transition metal compounds are known to exhibit a wide variety of colors. Until now, it has been possible to color white titanium oxide by doping with transition metal ions, but it is difficult to avoid biotoxicity derived from transition metals.

特徴・独自性
  • In the present invention, titanium oxide inorganic pigments that do not contain transition metals and have various colors such as white, yellow, red, gray, green, purple, black, and skin color have been realized.
実用化イメージ

New applications of titanium oxide pigments are expected in the cosmetics field, where biotoxicity is an issue.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Yin Shu

[Column Support System]

[combinatorial synthesis]

Synthesis of Biologically Active Cyclodepsipeptide Natural Products

NEXT
PREV
特徴・独自性
  • Cyclodepsipeptide natural products include optically active hydroxy acids as well as various unnatural amino acids and exhibit a variety of biological activity depending on the peptide sequence, chirality, and selection of the hydroxy acids. Structure-activity relationships of a synthetic library of natural products could give us significant information of not only biologically important moieties but also intact positions in the biologically active small molecules. On the basis of the former information, more potent compounds and/or peptide mimetics can be designed. The latter information can also be important for making a molecular probe that is used for exploration of a target molecule.
実用化イメージ

We study for combinatorial synthesis of natural product analogues using solid-phase.

Researchers

Graduate School of Pharmaceutical Sciences

Takayuki Doi

[Combustion]

Identification of Ignition and Combustion Characteristics by a Micro Flow Rector with a Temperature Gradient

NEXT
PREV
特徴・独自性
  • We have developed a methodology for identifying general ignition and combustion characteristics of gaseous and liquid fuels including bio and synthetic fuels. It enables identification of ignition and combustion characteristics of new fuels prior to application for practical combustion devices. The reactor system consists of a small diameter channel which has a temperature gradient from room temperature to the auto ignition temperature and thus reaction characteristics in different temperature levels can be easily investigated. Such a measurement had required research level skills and special devices such as rapid compression machine or shock tube which is costly in general, however, the micro flow reactor with temperature gradient enables reaction analysis easily.
実用化イメージ

It is expected to contribute to the designing of combustion devices, developments of new fuels, and chemical promoter and inhibitor.

Researchers

Institute of Fluid Science

Kaoru Maruta

Development of integrated safety management technology for hydrogen energy systems

NEXT
PREV
特徴・独自性
  • To investigate the diffusion and combustion phenomena of reactive hydrogen gas leakage when a high-pressure hydrogen tank fails due to crack propagation caused by an initial defect, we have developed a coupled analysis method that simultaneously analyzes the material structure and reactive turbulent multiphase flow through an interdisciplinary research approach. Furthermore, we have developed a new numerical prediction method related to the diffusion flow characteristics and combustion limits of hydrogen leaking due to crack propagation failure of high-pressure tank bulkheads.
実用化イメージ

We contribute to the design of hydrogen storage containers for various types of transportation equipment and the development of safety guidelines and risk management for hydrogen station configurations.

Researchers

Institute of Fluid Science

Jun Ishimoto

[communication skill training]

Changing Corporate In-Service Training

NEXT
PREV
特徴・独自性
  • We have developed a system named PF-NOTE that the system uses video cameras, clickers and a computer to bookmark an audience's clicker feedback into simultaneously recorded video. We are also doing research for creating effective education or learning programs by using the developed system. The system has been mainly used for reflective learning, and we have found that this system is effective in various situations for both teacher and learners, such as practice teaching for early career teachers, developing presentation skills, and developing discussion skills.
実用化イメージ

We offer PF-NOTE system(s) and education/learning program(s) to companies that are of particular interest with respect to communication skills training, passing skills to the younger generation of employees, observation skill training and job interview training.

Researchers

Graduate School of Education

Taira Nakajima

[complex flow]

Measurement-Integrated Simulation to Analyze Complex Flows

NEXT
PREV
特徴・独自性
  • In order to obtain huge fluid information of real flows we are developing a new flow analysis methodology "measurement-integrated simulation" by integrating experimental measurement and computer simulation. Complex real flows are accurately reproduced by the effect of a feedback signal to compensate the difference between the measurement and calculation. This can be appliedto wide variety of complex flow problems, for example, real-time visualization of blood flows for medical diagnosis, flow analysis around automobile body, real-time monitoring of flow in a complex piping in a nuclear power plant.
  • We are prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Toshiyuki Hayase

[Complex System]

Brainmorphic Computing Hardware

NEXT
PREV
特徴・独自性
  • We will develop a brainmorphic computing hardware, which realizes the brain-specific functions such as conscious/sub-conscious process, self, selective attention, and so on, by directly using inherent physics and dynamics of constituent devices. The resulting hardware would be small, efficient, high-performance. Some examples include the chaotic neural network reservoir, optimization through high-dimensional complex dynamics, and neural network composed of spin-orbit torque nano-devices.
  • The resulting hardware is suitable for the edge AI which learns users’ personal behavior. Examples include watching service devices embedded in hearing aids or dental implants, which monitor and learn personal cardiac and brain-wave signals or saliva ingredients, to detect abnormal situations.
実用化イメージ

Edge AI devices, especially for peri-personal space), Time-series processing (prediction, recognition, and categorization), Online real-time learning.

Researchers

Research Institute of Electrical Communication

Yoshihiko Horio

[Composite]

Development of High Performance Carbon Nanotube-Alumina Composite

NEXT
PREV
特徴・独自性
  • One of the important challenges in the development of carbon nanotubes (CNTs) reinforced ceramic composites is uniform dispersion of CNTs in the matrix. The mechanical properties of CNT/ceramics composites have been limited to date due to the formation of CNT agglomerates in the composite. We have successfully produced CNT/alumina composites with world top class strength and toughness, by employing a newly developed CNTs dispersion technique based on a flocculation method. The processing method developed in this study enables us to prepare high performance CNT materials using a pressureless sintering method.
実用化イメージ

The possible applications of the CNT/alumina composites developed in this study include tribological materials (ball bearing), biomaterials (artificial hip joint), micro-actuator materials utilizing electrostrictive effects, electromagnetic wave absorber, particularly in the frequency range of several GHz and several ten GHz.

Researchers

New Industry Creation Hatchery Center

Toshiyuki Hashida

[composite crystals]

Development of Potential Thermoelectric Materials

NEXT
PREV
特徴・独自性
  • We have been exploring novel thermoelectric materials. Functions of a solid substance primarily depend on the electronic structure, directly derived from its crystal structure. Through high-quality structure analyses using neutron and X-ray diffraction, combined with first-principles calculations, we have been fabricating materials with desired functions. To date, more than 40 novel materials have been discovered based on our guiding principles.
実用化イメージ

For developing future device technologies, challenges on thin-film thermionic multilayers and organic thermoelectric materials are currently underway.

Researchers

Graduate School of Engineering

Yuzuru Miyazaki

[Compound optimization]

Development of PHD-Targeted Drug for Ischemic Injury

NEXT
PREV
特徴・独自性
  • All the living organisms generate energy from molecular oxygen to maintain their own lives. Once the concentration of oxygen falls down, life activity gets severely hampered and it could sometimes cause death. Typical examples that are related to local hypoxia are ischemic heart disease, stroke and kidney disease.
  • We focus on the function of prolyl hydroxylase (PHD) as a sensor to detect the hypoxia, and we are developing drugs to treat ischemic injury by controlling hypoxia.
実用化イメージ

Currently, we have several compounds that inhibit the PHD. We want to commercialize in conjunction with pharmaceutical companies in Japan and overseas, advancing our non-clinical studies for clinical development.

Researchers

Graduate School of Medicine

Toshio Miyata

[Compound Semiconductor]

Development of Compound Semiconductor Radiation Detectors

NEXT
PREV
特徴・独自性
  • The main research subject of our group is developing material purification methods, crystal growth methods and detector fabrication technologies for compound semiconductor radiation detectors. Our group intensely studies a compound semiconductor, thallium bromide (TlBr), for fabrication of gamma-ray detectors for the advanced radiation applications. The attractive physical properties of TlBr lie in its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3) and wide bandgap (2.68 eV). Due to the high atomic number and high density, TlBr exhibits high photon stopping power. The wide bandgap of TlBr permits the device low-noise operation at and above room temperatures.
実用化イメージ

Our group focuses on development of compound semiconductor radiation detectors for advanced radiation applications including ultra-high resolution PET systems, ultra-high resolution SPECT systems, photon counting CT systems and Compton cameras. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering

Keitaro Hitomi

[Compton Camera]

Development of Compound Semiconductor Radiation Detectors

NEXT
PREV
特徴・独自性
  • The main research subject of our group is developing material purification methods, crystal growth methods and detector fabrication technologies for compound semiconductor radiation detectors. Our group intensely studies a compound semiconductor, thallium bromide (TlBr), for fabrication of gamma-ray detectors for the advanced radiation applications. The attractive physical properties of TlBr lie in its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3) and wide bandgap (2.68 eV). Due to the high atomic number and high density, TlBr exhibits high photon stopping power. The wide bandgap of TlBr permits the device low-noise operation at and above room temperatures.
実用化イメージ

Our group focuses on development of compound semiconductor radiation detectors for advanced radiation applications including ultra-high resolution PET systems, ultra-high resolution SPECT systems, photon counting CT systems and Compton cameras. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Graduate School of Engineering

Keitaro Hitomi

[Compton Scattering ]

Visualization of Electron Motion in Matter by Means of Electron Compton Scattering

NEXT
PREV
特徴・独自性
  • Properties of matter, such as reactivity and functionality, are determined by the motion of the constituent electrons. For this reason we aim at developing new spectroscopic methods, by using electron Compton scattering, that would visualize the electron motion for stable species and most importantly the change of electron motion in transient species, which is the driving force behind any chemical reactions;
  • (1) development of molecular frame electron momentum spectroscopy for momentum-space imaging of molecular orbitals in the three-dimensional form,
  • (2) developments of multiparameter coincidence techniques for studies on stereo-dynamics in electron-molecule collisions,
  • (3) development of time-resolved electron momentum spectroscopy for visualization of the change of electron motion in transient species.
  • We hope to conduct collaborative research with a willing company for a practical application of this technology in industry, and we are also prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Masahiko Takahashi

[Computational Fluid Dynamics]

Development of a Numerical Prediction System for Sliding Part Wear and Seizure Occurrence Portions

NEXT
PREV
概要

Focusing on the lubricant film flow with phase change between the engine piston pin and connecting rod small end, we developed a new multiphase fluid-structure coupled analysis method that takes into account elastic deformation of the structure and flow path changes and developed a simulation prediction method for tribological properties under high load conditions. The simulation prediction method for tribological properties under high load conditions has been created. As a result, we succeeded in simulation prediction of the wear/seizure generating areas in sliding parts. We discovered that the peculiar deformation behavior of the components is the cause of wear/seizure.

従来技術との比較

It has been thought that computational prediction is impossible to verify the wear and seizure locations in fluid lubrication. Still, this study succeeded in the simulation prediction of wear and seizure locations in sliding parts.

特徴・独自性
  • Numerical prediction of the wear and seizure locations in the sliding parts of engine piston pins was successfully performed.
  • The bow-like deformation of the piston pin was identified as the cause of mechanical contact and seizure at the connecting rod edge.
  • A three-dimensional multiphase fluid-structure coupled analysis method has been successfully developed, considering the piston pin's elastic deformation and connecting rod and thin-film cavitation1 lubrication with unsteady flow path changes.
実用化イメージ

This research method applies to automotive engines and all sliding component elements using fluid lubrication. It contributes to damage prediction and the development of safety guidelines for transportation and industrial machinery components, enabling the optimal design of components.

Researchers

Institute of Fluid Science

Jun Ishimoto

[Computational mechanics]

Development of integrated safety management technology for hydrogen energy systems

NEXT
PREV
特徴・独自性
  • To investigate the diffusion and combustion phenomena of reactive hydrogen gas leakage when a high-pressure hydrogen tank fails due to crack propagation caused by an initial defect, we have developed a coupled analysis method that simultaneously analyzes the material structure and reactive turbulent multiphase flow through an interdisciplinary research approach. Furthermore, we have developed a new numerical prediction method related to the diffusion flow characteristics and combustion limits of hydrogen leaking due to crack propagation failure of high-pressure tank bulkheads.
実用化イメージ

We contribute to the design of hydrogen storage containers for various types of transportation equipment and the development of safety guidelines and risk management for hydrogen station configurations.

Researchers

Institute of Fluid Science

Jun Ishimoto

[computational simulation]

Biomodel for Development of Endovascular Treatment

NEXT
PREV
特徴・独自性
  • We perform in-vitro or computational researches for development of medical devices. We develop a model of artery or bone to evaluate medical devices. And we apply optimization way for development of medical devices. Our main target is, currently, stent, or catheter.
実用化イメージ

Our collaboration company can be; medical equipment, device, medical image, MEMS, standardization, medical training, or polymer.

Researchers

Institute of Fluid Science

Makoto Ohta

Material Design for Solution of Energy and Environmental Problems by Multi-Physics and Multi-Scale Simulation

NEXT
PREV
特徴・独自性
  • In order to solve the energy and environmental problems, the development of the high-functional and high-performance materials is required in a wide variety of research fields such as fuel cell, Li-ion battery, tribology etc. Especially, the recent material technologies constitute of multi-physics and multi-scale phenomena including chemical reaction, friction, impact, stress, fluid, photon, electron, heat, electric and magnetic fields etc. on nano- and macro-scales. Therefore, Kubo laboratory is pioneering the development of multi-physics and multi-scale simulator on the basis of quantum chemistry and is utilizing supercomputers "Fugaku" and "MASAMUNE-IMR" for realizing the theoretical material design with high-accuracy.
実用化イメージ

We utilize our developed multi-physics and multi-scale simulation technology on the basis of quantum chemistry for acceelerating the material development in a wide variety of private companies of automotive, machinery, power, electronics, material, metal, chemistry etc. and then contribute to solving the energy and environmental problems.

Researchers

Institute for Materials Research

Momoji Kubo

[Computer Architectures]

High Performance Computer Architectures and their Applications

NEXT
PREV
特徴・独自性
  • My research interests include the design and development of high-performance supercomputing systems and their applications. Targeted areas range from the key components of supercomputing systems, which include processor architectures, memory subsystems, network systems, task schedulers, and compilers, to high-performance multimedia processing algorithms such as photo-realistic computer graphics.
実用化イメージ

Currently I am conducting joint-research projects with several companies in the fields of high-performance computer architecture design and advanced simulation technologies for industrial design such as next-generation supercomputers and highly efficient and comfortable regional jets.

Researchers

Graduate School of Information Sciences

Hiroaki Kobayashi

[Computer Vision]

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
特徴・独自性
  • Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.
実用化イメージ

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Researchers

Administrative Staff

Takafumi Aoki