"I" Keywords - 57 Result(s)

 I

[India]

Religion, language, society, and life in ancient India

NEXT
PREV
特徴・独自性
実用化イメージ

Researchers

Graduate School of Arts and Letters

Naoko Nishimura

[Industrial Ecology]

Eco-Material Processing

NEXT
PREV
特徴・独自性
  • The major subject of our group is ferrous process metallurgy including thermodynamics of metals, alloys and molten slags, high temperature heterogeneous kinetics, phase equilibria of complex oxide systems and so on. We are interested in physic-chemical fundamentals of processing of metals, slags, scrap and waste. Recently our research interests are extended to multidisciplinary area so-called "Industrial Ecology" by the combination of process metallurgy, LCA (life cycle assessment) and social science such as econometrics.
実用化イメージ

Typically our research group is aggressively working in the area of material flow analysis of critical metals considering the quality of recycled materials. Currently our major research partners are steel and non-ferrous industries, while we do hope to collaborate with waste treatment company, mineral industry and an administrative organ.

Researchers

New Industry Creation Hatchery Center

Tetsuya Nagasaka

[information credibility analysis]

Natural Language Processing for Semantic Analysis of Big Data

NEXT
PREV
特徴・独自性
  • This lab conducts fundamental research for deep natural language processing (NLP) and NLP-oriented information organization such as classification, extraction, and summarization of language information. Our activities also cover a broad range of applied research including NLP-based information and knowledge mining, information credibility analysis, and resilient ICT through the maximal use of Big Data.
実用化イメージ

(i) Analysis of market trend or research trend through intelligent text mining, (ii) Discovery of potential needs and risks from opinions in social media, (iii) Management of knowledge in a company by analyzing internal documents, etc.

Researchers

Center for Language AI Research

Kentaro Inui

[Information Security]

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
特徴・独自性
  • Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.
実用化イメージ

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Researchers

Administrative Staff

Takafumi Aoki

Cyber Physical Systems Security and Its Applications

NEXT
PREV
特徴・独自性
  • Our study focuses on information security technologies for the next-generation ICT society fusing real-world and cyber-space computing. We are now conducting the research and development of ultra-high-speed, ultra-low power LSI computing to perform security functions such as encryption and secure computing, secure implementation technologies to protect systems from various physical attacks (attacks carried out by physical access to the system), and security optimization technologies tailored to the system usage environment and application area.
実用化イメージ

We can provide collaboration and information exchange services in the fields of information security. In particular, we have experiences of domestic/international collaborative researches on embedded security with some companies, universities, and governmental institutes.

Researchers

Research Institute of Electrical Communication

Naofumi Homma

[Information Theory]

newData science-based analysis for unsteady aerodynamic flows

NEXT
PREV
概要

Our group studies a range of unsteady flow phenomena leveraging data science, nonlinear machine learning, complex network theory, information theory, and computational fluid dynamics. Our ultimate goal is to build a data-oriented foundation for real-time analysis, modeling, and control of unsteady flows ubiquitously appearing in various situations around small air vehicles, airplanes, motor vehicles, and fluid-based industrial machines.

従来技術との比較

Equipped with nonlinear machine learning-based sparse sensor reconstruction and data compression supported through traditional numerical and experimental analysis, our approach enables high-resolution reconstruction, real-time prediction, and control of flow fields with limited availability of data.
These techniques are aimed at analyzing and controlling large-scale, complex nonlinear flow phenomena that have been challenging to tackle with conventional linear methods.

特徴・独自性
  • ・Real-time spatiotemporal flow field reconstruction from sparse sensors is enabled by turbulence super-resolution analysis with machine learning.
  • ・Understanding and modeling of unsteady fluid flows at low cost is made possible through low-dimensional manifold identification and compression.
  • ・Development of explainable machine-learning approaches for analyzing causal vortex interactions based on complex network theory and information theory.
  • ・Multi-modal data analysis through the fusion of numerical, experimental, and theoretical data.
実用化イメージ

Our group aims to develop technologies that accurately sense, predict, model, and control fluid flows —such as air and water— around objects including airplanes, automobiles, and wind turbines, even with sparse sensor information.

These technologies can contribute to society in various ways, including:
・Improving fuel efficiency and safety of aircraft
・Enhancing the aerodynamic performance of vehicles for energy savings
・Supporting disaster prevention through wind flow prediction during emergencies

We actively seek to co-create innovations through joint research with industrial companies interested in the following areas:

・Predicting and controlling fluid flows using AI and machine learning
・Understanding flow structures through information theory and network science
・Building highly accurate and reproducible models by integrating traditional fluid dynamics with modern data-driven methods

Equipped with physics-based nonlinear machine learning, we are working to develop groundbreaking fluid analysis technologies that benefit a wide range of industrial, environmental, and societal applications.

Researchers

Department of Aerospace Engineering, Graduate School of Engineering

Kai Fukami

[inhibitors]

Development of the next generation anti-HIV agents

NEXT
PREV
特徴・独自性
  • HIV infection is one of most serious concern in infectious diseases. We will perform anti-HIV assays for unmet medical needs in control of HIV infections with established novel assays. We have developed reverse transcriptase inhibitor that has novel mechanism of inhibition, translocation-inhibition (J Biol Chem, 2009). Dr Kodama participated in the primary screening and development of a new HIV integrase inhibitor, elvitegravir (J Virol 2009), and a unique reverse transcriptase inhibitor, islatravir, which phase III clinical trials by the Merck & Co., Inc. will complete, soon. We have a representative resistant HIV strain-library for anti-HIV screening and several target oriented high through-put screening systems.
実用化イメージ

We can establish high through-put screening for new targets, so please consult with us individually. We are open to joint development requiring BSL3/P3 experimental facilities and academic guidance including other microorganisms.

Researchers

International Research Institute of Disaster Science

Eiichi Kodama

[Inorganic pigments]

Colorful titanium oxide pigments without transition metals

概要

Colorful TiO2 Particle
https://www.t-technoarch.co.jp/data/anken_en/T19-849.pdf

従来技術との比較

Transition metal compounds are known to exhibit a wide variety of colors. Until now, it has been possible to color white titanium oxide by doping with transition metal ions, but it is difficult to avoid biotoxicity derived from transition metals.

特徴・独自性
  • In the present invention, titanium oxide inorganic pigments that do not contain transition metals and have various colors such as white, yellow, red, gray, green, purple, black, and skin color have been realized.
実用化イメージ

New applications of titanium oxide pigments are expected in the cosmetics field, where biotoxicity is an issue.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Yin Shu

[inorganic/organic semiconductors,]

Vacuum Engineering of Solid-Liquid Interfaces and its Process Applications

NEXT
PREV
特徴・独自性
  • We challenge to fabricate in vacuum-stabilized micro/nano-scale liquid materials, explore their novel chemicophysical properties and develop their vacuum processing applications. The representative examples include ultra thin film ionic liquid on the nanometer scale and advanced vapor-liquid-solid growth (VLS) of inorganic/organic materials, such as 4H- and 3C-SiC films, single crystal pentacene and a porous polymer film of plolythiophene.
実用化イメージ

Our research outcomes will contribute to the following research and development:
1) a next-generation semiconductor process with the merits of the wet process
2) a new purification process of organic semiconductors, by which some part of inorganic semiconductor materials would be replaced in response to the present world-wide shortage of semiconductors.

In addition, the consultation of how to use our ionic liquid-assisted vapor growth method in attempt to obtain organic single crystals is welcome.

Researchers

Graduate School of Engineering

Yuji Matsumoto

[Input Output Analysis]

Visualization of supply chain risks from the resource logistics perspective

NEXT
PREV
特徴・独自性
  • With the increased global concerns of resource and environmental constraints of recent years, the role of mining, as a constituent of social responsibility associated with resource extraction and usage, is becoming increasingly important in the science, technology, and innovation policy. Under increasing public and shareholders' concerns of social and environmental sustainability, the fabrication industries require careful attention owing to their own risks related to the resources and materials that are used in their products and services. The Material Flow Analysis tool and Input output technique provide useful perspectives and valuable evidences for avoiding or minimizing the social and environmental risks related to the demand of resources.
実用化イメージ

Our developed model evaluates the risk weighted flow analysis by combining the resource logistics database and Global Link Input Output model. The estimated results shed light on how resource logistics prepares policy makers and R&D engineers to confront the risks behind resource usage and how the information should be shared among the stakeholders.

Researchers

Graduate School of Environmental Studies

Kazuyo Matsubae

[insects]

Lethal effects of blue light on insects

NEXT
PREV
特徴・独自性
  • We revealed the strong lethal effect of short-wavelength visible light (blue light: 400–500 nm) on insects. That is, we found that blue light irradiation by using a common light-emitting diode (LED) can kill the eggs, larvae, pupae, and adults of various orders of insects. Our findings will provide clean and safe pest-control technique as well as important information on the hazards of exposure to visible light.
実用化イメージ

Researchers

Graduate School of Agricultural Science

Masatoshi Hori

[Insulin]

Development of devices regulating inter-organ neural network for diabetes therapy

NEXT
PREV
特徴・独自性
  • Diabetes induces several complications, including retinopathy and nephropathy. In patients with type 1 diabetes as well as those with type 2 diabetes, pancreatic beta cells have reportedly decreased. Therefore, regeneration therapy of pancreatic beta cells may be very effective for major populations of diabetic patients. We discovered a neuronal network, from the liver, which selectively elicits pancreatic beta cell proliferation (Science 2008, Fig.). In a murine model with insulin-deficient diabetes, stimulation of this network improved diabetes. Thus, building devices which regulate the inter-organ neuronal network may lead to “regenerative therapy” for diabetes which regenerates pancreatic beta cells in the pancreas using patients’ own cells and patients’ own systems. We hope to conduct collaborative research with a willing company for a practical application of this technology.
実用化イメージ

Researchers

Graduate School of Medicine

Hideki Katagiri

[integrated circuit]

Spintronics device

特徴・独自性
  • To realize ultralow-power and high-performance integrated circuit and information processing, spintronics physics, material, devices are studied.
実用化イメージ

Researchers

Research Institute of Electrical Communication

Shunsuke Fukami

[Integrated design]

Integrated Design for Sustainable Energy Systems

NEXT
PREV
特徴・独自性
  • The concept of LCS (low carbon society) is a unique approach having multi-dimensional considerations such as social, economic and environmental dimensions. The LCS aims at an extensive restructuring of worldwide energy supply/demand network system by not only replacing the conventional parts with the new ones, but also integrating all the necessary components and designing absolutely different energy networks. An energy-economic model is a tool for decision making for a variety of purposes, such as energy security planning, climate policy analysis, and technology innovation assessment.
実用化イメージ

Provide local governments, participating companies, and consultants with databases related to local energy supply and demand to support data analysis and scenario design in planning smart cities and decarbonized regions.

Researchers

Graduate School of Engineering

Toshihiko Nakata

[Integrated research]

Development of integrated safety management technology for hydrogen energy systems

NEXT
PREV
特徴・独自性
  • To investigate the diffusion and combustion phenomena of reactive hydrogen gas leakage when a high-pressure hydrogen tank fails due to crack propagation caused by an initial defect, we have developed a coupled analysis method that simultaneously analyzes the material structure and reactive turbulent multiphase flow through an interdisciplinary research approach. Furthermore, we have developed a new numerical prediction method related to the diffusion flow characteristics and combustion limits of hydrogen leaking due to crack propagation failure of high-pressure tank bulkheads.
実用化イメージ

We contribute to the design of hydrogen storage containers for various types of transportation equipment and the development of safety guidelines and risk management for hydrogen station configurations.

Researchers

Institute of Fluid Science

Jun Ishimoto

[integration]

MEMS/Micromachines and Microfabrication Technology

NEXT
PREV
特徴・独自性
  • We are studying MEMS (Micro Electro Mechanical Systems) and related technologies, which are typically used for the input/output of information/communication devices, the safety of automobiles etc. Our representative topics include integrated sensors, piezoelectric devices, RF MEMS, micro energy devices and wafer-level packages. Our facilities are open-accessible and well equipped with a lot of tools for lithography, dry/wet etching, thin film deposition, wafer bonding, device mounting and evaluations, which can be operated by each researcher. Using these tools, a variety of MEMS are being prototyped. Also, new microfabrication tools are being developed by ourselves.
実用化イメージ

We are collaborating with many companies, from which visiting researchers are dispatched to our laboratory. We also accept companies which want to just use specific tools in our facilities. Consultation is always welcome.

Researchers

Graduate School of Engineering

Shuji Tanaka

[Intelligent Mobility]

Robot Technology for Achieving Secure Society

NEXT
PREV
特徴・独自性
  • Tadokoro Laboratory developed ‘Active Scope Camera,' a world-unique rescue robot that can search deep in rubble piles of collapsed structures through a gap of a few cm wide. It also developed ‘Quince,' a world-unique unmanned ground vehicle that could survey the second to fifth floors of Nuclear Reactor Buildings of Fukushima-Daiichi Nuclear Power Plant. Its technologies was applied industries, including unmanned transfer vehicle for outdoors under ice and snow environment being actually used in a factory of Toyota Motor East Japan, and ‘Robo-Scope' for debris inspection in collaboration with Shimizu Corporation.
実用化イメージ

We have a policy of education through and research for solution to actual problems. Current nearly ten collaborative researches focuses on outdoor investigation, infrastructure/plant inspection, and remote/autonomous task execution by robots.

Researchers

Graduate School of Information Sciences

Satoshi Tadokoro

[Inter-organ metabolic communication]

Development of devices regulating inter-organ neural network for diabetes therapy

NEXT
PREV
特徴・独自性
  • Diabetes induces several complications, including retinopathy and nephropathy. In patients with type 1 diabetes as well as those with type 2 diabetes, pancreatic beta cells have reportedly decreased. Therefore, regeneration therapy of pancreatic beta cells may be very effective for major populations of diabetic patients. We discovered a neuronal network, from the liver, which selectively elicits pancreatic beta cell proliferation (Science 2008, Fig.). In a murine model with insulin-deficient diabetes, stimulation of this network improved diabetes. Thus, building devices which regulate the inter-organ neuronal network may lead to “regenerative therapy” for diabetes which regenerates pancreatic beta cells in the pancreas using patients’ own cells and patients’ own systems. We hope to conduct collaborative research with a willing company for a practical application of this technology.
実用化イメージ

Researchers

Graduate School of Medicine

Hideki Katagiri

Development of New Drugs and Devices Regulating Inter-Organ Neural Network for Obesity Therapy

NEXT
PREV
特徴・独自性
  • Obesity induced the metabolic syndrome, which causes cardiovascular diseases. Obesity has now become a major health concern not only in developed countries but developing countries. However, diet and exercise are still major therapies. We discovered endogenous systems maintaining homeostasis of energy metabolism and revealed several neuronal networks among organs to be responsible for the regulation systems.
  • 1) Afferent neuronal signals from adipose tissue regulate appetite and prevent over-eating during obesity development (Cell Metab 2006)
  • 2) Neuronal network from the liver enhances basal metabolic rates to prevent obesity development when energy store is increasing (Science 2006) 3) Neuronal network from the liver suppresses adaptive thermogenesis in brown adipose tissue (Cell Metab 2012).
実用化イメージ

On the basis of these original discoveries, we are aiming at developing new drugs and/or building devices which regulate the inter-organ neuronal networks and hope to conduct collaborative research with a willing company for a practical application to obesity therapy.

Researchers

Graduate School of Medicine

Hideki Katagiri

[Interaction]

Interactive Content to Enrich Our Lives

NEXT
PREV
特徴・独自性
  • (1) Displays and Interactive Techniques
  • Designing original display systems to show visual information accurately and effectively, and interaction techniques to make better use of these display systems.
  • (2) Interactive Video Content
  • Creating new interactive content from real video taken by cameras and computer-generated animations.
  • (3) Modeling and Controlling the “Atmosphere” in a Conversation Space
  • Aiming to stimulate the “atmosphere” in a conversation space by supplying real-time feedback to the users, we are exploring means of sensing and analyzing change in the space.
  • (4) Designing and Evaluating Novel Interaction Techniques
  • Designing and evaluating novel interaction techniques on target selection for variety types of displays including large and touch displays.
実用化イメージ

Researchers

Research Institute of Electrical Communication

Yoshifumi Kitamura