"M" Keywords - 143 Result(s)

 M

[Microfabrication]

Design, fabrication and test of high performance miniaturized sensor and actuator systems

NEXT
PREV
特徴・独自性
  • Micro and nano electro-mechanical systems (MEMS/NEMS) have completely changed human society in the past decades. Many devices that are taken for granted these days like smart phone, future car and drone would be unthinkable without them.
  • The integration of various new kinds of materials, such as metallic glass and nanostructures into micro technologies allows us to create devices with novel performance and characteristics; examples include acoustic sensors and actuators, thermoelectric generators and wafer level packages.
  • In collaboration with partners inside and outside Tohoku University, technologies are being developed that can be transferred to industry ranging from material integration and processes to packaging and reliability.
実用化イメージ

Wide collaboration in Microsystem technology is possible. We develop, implement and optimize processes, devices and systems until they are ready for use, keeping in mind reliability, yield and other important features for commercialization. We work with also with partners, such as Fraunhofer. Flexible interlinking of expertise and capacities with other research groups enables us to meet broad project requirements and create complex system solutions.

Researchers

Micro System Integration Center

Froemel Joerg Eckhardt

[Microfibril]

Development of preventive medicine for aortic aneurysm and dissection of Marfan syndrome

NEXT
PREV
特徴・独自性
  • Marfan’s syndrome (MF) is a severe, systemic disorder of connective tissue formation. A variety of MFS therapies have been developed, including surgical therapy for aortic root aneurysm and dissection (AAD) that are life-threatening, traditional medical therapies such as β-adrenergic receptor or angiotensin II receptor blockers for slow aortic growth and to decrease the risk of AAD. However these treatments did not prevent tissue destruction in the AAD of MF. To develop preventive strategy for AAD, it will be necessary to identify molecular mechanisms of microfibril formation and an appropriate fibrillin-1 microfibril associated molecule. Recently, ADAMTSL6β, which is a microfibril-associated extracellular matrix protein contributes the regeneration of microfibril by promoting fibrillin-microfibril assembly. We try to develop ADAMTSL6β as a preventive medicine for AAD of MF by regeneration of fibrillin-1 microfibril assembly.
実用化イメージ

Researchers

Graduate School of Dentistry

Masahiro Saito

[Micromachining]

Minimally Invasive Medical Devices and Healthcare Devices Using Micro/Nano Machining Technology

NEXT
PREV
特徴・独自性
  • Medical devices and healthcare devices which have several functions with small size have been developed using precise micromachining technology and MEMS (Microelectromechanical systems) technology. More precise and safe diagnostics and therapy, as well as novel diagnostics and treatment can be realized by developing high-functionalized endoscopes and catheters and developing novel medical devices. Healthcare without restriction of location and time is aimed by developing thin, light and high-functionalized new healthcare devices.
実用化イメージ

Besides of basic research, we are working in cooperation with clinicians and medical device companies for practical use. We founded a university-launched venture company for bridge-building between university and company and collaborative researches have been performed.

Researchers

Graduate School of Biomedical Engineering

Yoichi Haga

MEMS/Micromachines and Microfabrication Technology

NEXT
PREV
特徴・独自性
  • We are studying MEMS (Micro Electro Mechanical Systems) and related technologies, which are typically used for the input/output of information/communication devices, the safety of automobiles etc. Our representative topics include integrated sensors, piezoelectric devices, RF MEMS, micro energy devices and wafer-level packages. Our facilities are open-accessible and well equipped with a lot of tools for lithography, dry/wet etching, thin film deposition, wafer bonding, device mounting and evaluations, which can be operated by each researcher. Using these tools, a variety of MEMS are being prototyped. Also, new microfabrication tools are being developed by ourselves.
実用化イメージ

We are collaborating with many companies, from which visiting researchers are dispatched to our laboratory. We also accept companies which want to just use specific tools in our facilities. Consultation is always welcome.

Researchers

Graduate School of Engineering

Shuji Tanaka

[Microscopic Spectroscopy Measurement]

Development of Atom-scale Spectroscopy Measurement for Nano Materials

NEXT
PREV
特徴・独自性
  • Scanning tunneling microscope (STM) and atomic force microscope (AFM) are among a few microscopes which enable a direct observation of atomic scale structures of materials. If compared with other electron microscope like transmission electron microscope (TEM), the energy of the electron used for STM is very low that has a big advantage of low damage for sample. Thus STM and AFM are regarded as the most important tools to characterize materials in nanotechnology. The research is now developing from a mere observation of the shape of material to the characterization specific properties of materials with an atomic scale resolution. These properties include spin and molecule vibration; well established techniques like ESR/NMR and infrared-spectroscopy requires more than billions of molecules to obtain data, while STM can obtain these data for a single molecule.
  • We are interested following issues and like to have a collaboration with industrial companies.
  • 1. Molecule-scale morphological characterization of soft-material, polymers and bio material.
  • 2. Site specific vibration spectroscopy of molecules with an atomic resolution.
  • 3. Single spin detection with ESR-STM method
  • 4. Developing atom-scale characterization tool
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Tadahiro Komeda

[Microscopy]

Analysis and Function Elucidation of Fine Clusters and Defects in Materials Invisible by Electron Microscopy

NEXT
PREV
特徴・独自性
  • It is well known that nano-scale impurity/solute clusters, defects, defect clusters and their complexes affect the mechanical and electrical properties in materials. However, it is very difficult to observe these objects even by state-of-the-art electron microscopes. We overcome the difficulty by employing noble two techniques: laser three-dimensional atom probe (3D-AP) technique and positron annihilation spectroscopy (PAS). Laser 3D-AP can map out each atom in various materials (metals, semiconductors, insulators) in three-dimensional real space with nearly atomic scale resolution. PAS can detect vacancy-type defects and defect-impurity complexes very sensitively.
実用化イメージ

By combining these methods, we are going to reveal the functions of the fine impurity clusters and defects to the materials: developments of new nano-structured materials, the mechanism of degradation of aged structural materials, the fall in the yield of semiconductor device production, and developments of quantum devices etc.

Researchers

Institute for Materials Research

Yasuyoshi Nagai

[microsporogenesis]

Methods to Restore Strelity of Gramineous Plants under High- and Low-Temperature Stress Conditions

NEXT
PREV
特徴・独自性
  • Plant reproductive development is more sensitive than vegetative growth to many environmental stresses. High-temperature injury is becoming an increasingly serious problem due to recent global warming. In wheat, barley, and other crops, the early phase of anther development is most susceptible to high temperature. Oppositely, grain yields in rice plants are often reduced by exposure to low temperature. Unexpected climate change, such as abnormally hot or cool summer temperatures, have occurred repeatedly during recent years. This method indicates that an appropriate use of specific phytohormones, such as auxin and GA, may promote stress tolerance and adaptation to abiotic stresses.
実用化イメージ

These potentially novel functions of the classical phytohormones will be important sustainable agriculture in the face of global climate change.

Researchers

Graduate School of Life Sciences

Atsushi Higashitani

[Microstructure]

Advanced Control of Microstructure and Property of Structural Metallic Materials

NEXT
PREV
特徴・独自性
  • Microstructure represents various kinds of heterogeneities in the metallic materials, i.e., grains, component phase, lattice defects and chemical inhomogeneity such as impurity/alloying elements. It can be modified through control of phase transformation/precipitation and deformation/recrystallization by adjusting compositions of materials and/or through processing routes (heat treatment, deformation). Such expertise in micro/nanostructure control is very important in production of current materials from viewpoints of energy saving and recycling in structural materials such as steels and titanium alloys.
  • We attempt to apply more advanced control of micro/nanostructures, such as atomic structures of crystalline interfaces, chemistory in an atomic scale (e.g., segregation) and so on. Fundamentals of microstructure formation (thermodynamics, kinetics, crystallography) are examined both theoretically and experimentally to clarify key factors for microstructure control. Another important aspect in our research is the improvement of mechanical property by microstructure manipulation.
実用化イメージ

Possibilities to establish new functions (e.g., superplasticity, shape memory/superelasticity) as well as superior mechanical properties (e.g., ultrahigh strength with high toughness/ductility) is also explored.

Researchers

Institute for Materials Research

Tadashi Furuhara

[microwave]

Microwave Processing of Functional Inorganic Materials

NEXT
PREV
特徴・独自性
  • Microwave processing is one of the attractive fields in recent materials processing. We perform various materials processing using non-equilibrium reaction field induced by microwave and/or ultrasonic irradiation. The topic contains powder metallurgy, nitride coatings, synthesis of new functional materials, fabrication of nanoparticles, etc. Recently we have developed a new TiN coating method using our microwave irradiation equipment operated at a frequency of 2.45 GHz. The method is simple but applicable to various substrates with complex shape. This method can be applied to various nitride coatings and will open a new coating technology in many fields of applications.
実用化イメージ

The major targets of TiN coatings are for cutting tools, ball bearings, dental implants, die and mold for stamping, and ornaments. The newly developed method makes it possible to perform nitride coatings within a short time using a standard microwave heating equipment. We hope to conduct collaborative research with a willing company for a practical application of these technology.

Researchers

Administrative Staff

Hirotsugu Takizawa

A Microwave-Based Non-Destructive Testing Method for the Long Range Inspection of Metallic Pipe

NEXT
PREV
特徴・独自性
  • We are developing a non-destructive testing method for the long range rapid inspection of metallic pipe using microwaves. The method propagates a microwave inside a pipe, and evaluates flaws appearing at the inner surface of the pipe on the basis of the reflection and transmission of the microwave. The method does not require scanning probes unlike conventional non-destructive methods, which enables one to inspect a pipe quite quickly. Our experimental validations have demonstrated the effectiveness of the method using a pipe as long as 30 m.
実用化イメージ

The NDT method proposed here is applicable when many pipes are inspected or conventional methods are not available due to pipe length and its configuration.

Researchers

Graduate School of Engineering

Hidetoshi Hashizume

[microwave absorber]

Magnetic Materials (Permanent Magnets, High Frequency Materials, Microwave Absorbers)

NEXT
PREV
特徴・独自性
  • The objectives of my researches are the development of high performance magnets and improvement of their magnetic properties. I have already developed following high performance magnets, such as Nd-Fe-B magnets using didymium, Sm-Fe-N high coercive powders prepared by HDDR and Fe-Cr-Co magnets. Recently, I have studied about the reduction of Dy content in Nd-Fe-B magnets for the use of HEV and have succeeded to develop high coercive Dy-free Nd-Fe-B sintered magnets by decreasing the grain size. I have also developed new kinds of microwave absorbers for the use in the frequencies of GHz range using permanent magnetic materials or nanoparticles.
実用化イメージ

High performance magnetic materials can be used in many applications in automobile, home electronics, IT and medical industries. We hope to conduct collaborative researches with companies producing magnetic materials for the use in these applications, which aims to improve magnetic properties or to develop new magnetic materials.

Researchers

Graduate School of Engineering

Satoshi Sugimoto

[Microwaves]

Advanced Wireless Information Technology

NEXT
PREV
特徴・独自性
  • Toward the realization of a ubiquitous and broad-band wireless network, we are actively engaged in the research work on dependable and low power consumption advanced wireless IT. We cover the whole technical fields from the lower to higher layers, i.e., signal processing, RF/Mixed signal device, antenna, MODEM and network technologies.As the studies on signal processing, RF/Mixed signal device and antenna technologies, we are developing RF/Millimeter-wave RF CMOS IC's, antenna integrated 3-dimensional system in package (SiP) transceiver modules, digital/RF mixed signal IC's.
実用化イメージ

If you are interested in a collaborative research work on above topics, please contact us via e-mail.

Researchers

Research Institute of Electrical Communication

Noriharu Suematsu

[Millimeter wave]

Development of Passive Millimeter-wave Imaging Device for Practical Applications

NEXT
PREV
特徴・独自性
  • Millimeter wave (MM-wave) which is one of the electromagnetic wave transparent the clothes, the fire and the wall etc. and all natural materials including objects in clothes always radiate the electromagnetic wave as the thermal noise. Using these characteristics of MM-wave, imaging of concealed objects in clothes can be accomplished in a noninvasive and noncontact manner. This technique is called Passive Millimeter Wave (PMMW) Imaging technique and we have developed a PMMW imaging device for security applications.
  • The wave length of MM-wave frequency range is from 1 mm to 10 mm and the spatial resolution of images in MM-wave range is low compared with sub-millimeter (terahertz) range or Infra-Red range, however, higher transmittance through clothes can be obtained compared with higher frequency range. Furthermore, low noise amplifier (LNA) exists which could be the advantage of MM-wave compared with higher frequency ranges.
  • Now the device was developed for the purpose of keeping safe and secure aircrafts and ships etc., we hope to conduct collaborative research with a willing company for a practical application of this technology in industrial fields such as the fire rescue, the police equipment and the medical devices.
実用化イメージ

Researchers

Graduate School of Engineering

Hiroyasu Sato

[millisecond]

High-speed X-ray phase tomography with a millisecond-order temporal resolution

NEXT
PREV
特徴・独自性
  • We successfully realized millisecond-order X-ray phase tomography using a fringe-scanning method in grating-based X-ray interferometry. We obtained phase tomograms with a measurement time of 4.43 ms using a white synchrotron X-ray beam. The use of a fringe-scanning method enables us to achieve not only a higher spatial resolution but also a higher signal-to-noise ratio than that attained by the Fourier transform method. In addition, our approach can be applied to realize four-dimensional or high-throughput X-ray tomography for samples that can be rotated at a high speed.
実用化イメージ

Researchers

International Center for Synchrotron Radiation Innovation Smart

Wataru Yashiro

[mind]

Brain Mechanism Realizing Human Mind

NEXT
PREV
特徴・独自性
  • I am investigating the brain mechanism of human mind. Specifically, my target is the internal schema that dissociate the self and other in the following three layers: physical, interpersonal, and social domains.
実用化イメージ

  • Improvement of the interface of the system
  • Clarifying the neuro-cognitive mechanism of the effect on the customer
  • New concept of the customer satisfaction

Researchers

Institute of Development, Aging and Cancer

Motoaki Sugiura

[minimally invasive surgery]

Clinical application of pulsed jet device to achieve maximal resection of the lesion and functional preservation

NEXT
PREV
特徴・独自性
  • Maximal resection and functional preservation, are often conflicting, but are both important factors to improve patient’s quality of life. Pulsed jet system is designed to achieve this goal by removing lesions without impairing small diameter vessels (100 μm - ). Standardization and specialization of surgical procedures is expected to achieve more easily compared to conventional surgical device using pulsed jet system. We have already reported significant increase of tumor removal rate, significant reduction of intraoperative blood loss and operation time in difficult lesions in the vicinity of sella turcica and skull base through expanded transsphenoidal approach. The system can eject small amount ( - 2 μl) of high speed liquid (- 50 m/s) for minimally invasive surgery, such as endoscopic, catheter, and microscopic surgery. The system is now under stage to expand clinical application outside the field of neurosurgery, and we are expecting new collaboration who can deal with increasing safety, effectiveness, differentiation from conventional instruments, accessibility.
実用化イメージ

Researchers

Administrative Staff

Teiji Tominaga

[Minimally Invasive Treatment]

Minimally Invasive Medical Devices and Healthcare Devices Using Micro/Nano Machining Technology

NEXT
PREV
特徴・独自性
  • Medical devices and healthcare devices which have several functions with small size have been developed using precise micromachining technology and MEMS (Microelectromechanical systems) technology. More precise and safe diagnostics and therapy, as well as novel diagnostics and treatment can be realized by developing high-functionalized endoscopes and catheters and developing novel medical devices. Healthcare without restriction of location and time is aimed by developing thin, light and high-functionalized new healthcare devices.
実用化イメージ

Besides of basic research, we are working in cooperation with clinicians and medical device companies for practical use. We founded a university-launched venture company for bridge-building between university and company and collaborative researches have been performed.

Researchers

Graduate School of Biomedical Engineering

Yoichi Haga

[Mitigation system]

[Mobile Adhoc Network]

Message Transmission without Cellular Coverage, “Relay-by-Smartphone"

NEXT
PREV
特徴・独自性
  • Our technology provides the necessary method for sending messages even when the physical infrastructure is not available. The technology utilizes common smartphone WiFi functionality to send message in a multi-hop fashion. Thus it is possible to send message to people further away. Our technology has been designed to be based on Delay-Tolerant Networks (DTN), but the technical key idea is the combination of DTN and Mobile Adhoc Network (MANET), which can improve the message delivery in an area with high population density or where mobility are fixed such as evacuation center.
実用化イメージ

This technology can be used to distribute information during emergency situation such as after disaster. In addition, it is possible to provide additional services such as advertisement within shopping areas, distribution of coupons, exchange of information within small group during public events or uses as transceiver during group hiking. There is also possibility of using this technology to provide communications service in developing nations.

Researchers

Graduate School of Information Sciences

Nei Kato

[mobile robot]

Coexistence of humans and mobile robots

NEXT
PREV
特徴・独自性
  • A variety of new mobilities coexisting with humans, such as service robots, self-driving cars, and personal mobility, are expected to be deployed. In this laboratory, we are studying technologies for the safe and smooth coexistence of these various mobile vehicles with humans.
  • In particular, we are approaching the problem from the aspect of predicting the movement of humans by considering their characteristics such as visual attention.
実用化イメージ

The targeted application is service robots, personal mobility, self-driving cars, and other mobile vehicles that will be expected to coexist with humans, as well as the design of transportation environments for these vehicles to safely coexist with humans.

Researchers

Graduate School of Engineering

Yusuke Tamura