"S" Keywords - 149 Result(s)

 S

[Smart Contract]

Blockchain-based Approachs for High Secure P2P-type Decentralized Cloud Storage and Practical Smart Contract for Trading Personal Data

NEXT
PREV
特徴・独自性
  • We are developing a decentralized P2P (Peer to Peer) type cloud storage that realizes innovative level of security by use of surplus storages of P2P nodes with the Blockchain technology. The developed storage can avoid the risk of large-scale information leakage of stored data due to the weakness of the central server. By using our cryptographic currency for rewards and usage fees in the storage, fair storage usage of all users can also be achieved.
  • In addition, We are developing a unique smart contract technology for practical decentralized trading of personal data among an unspecified number of users.
実用化イメージ

We hope to conduct collaborative researches with companies developing Bitcoin 2.0 type application (e.g. smart contract, Fintech) based on the Blockchain technology, the Internet of Things (IoT) technology, Medical Database for practical use.

Researchers

Center for Data-driven Science and Artificial Intelligence

Masao Sakai

[Smartphone]

Message Transmission without Cellular Coverage, “Relay-by-Smartphone"

NEXT
PREV
特徴・独自性
  • Our technology provides the necessary method for sending messages even when the physical infrastructure is not available. The technology utilizes common smartphone WiFi functionality to send message in a multi-hop fashion. Thus it is possible to send message to people further away. Our technology has been designed to be based on Delay-Tolerant Networks (DTN), but the technical key idea is the combination of DTN and Mobile Adhoc Network (MANET), which can improve the message delivery in an area with high population density or where mobility are fixed such as evacuation center.
実用化イメージ

This technology can be used to distribute information during emergency situation such as after disaster. In addition, it is possible to provide additional services such as advertisement within shopping areas, distribution of coupons, exchange of information within small group during public events or uses as transceiver during group hiking. There is also possibility of using this technology to provide communications service in developing nations.

Researchers

Graduate School of Information Sciences

Nei Kato

[smartphone zombie]

Coexistence of humans and mobile robots

NEXT
PREV
特徴・独自性
  • A variety of new mobilities coexisting with humans, such as service robots, self-driving cars, and personal mobility, are expected to be deployed. In this laboratory, we are studying technologies for the safe and smooth coexistence of these various mobile vehicles with humans.
  • In particular, we are approaching the problem from the aspect of predicting the movement of humans by considering their characteristics such as visual attention.
実用化イメージ

The targeted application is service robots, personal mobility, self-driving cars, and other mobile vehicles that will be expected to coexist with humans, as well as the design of transportation environments for these vehicles to safely coexist with humans.

Researchers

Graduate School of Engineering

Yusuke Tamura

[SNS analysis]

Natural Language Processing for Semantic Analysis of Big Data

NEXT
PREV
特徴・独自性
  • This lab conducts fundamental research for deep natural language processing (NLP) and NLP-oriented information organization such as classification, extraction, and summarization of language information. Our activities also cover a broad range of applied research including NLP-based information and knowledge mining, information credibility analysis, and resilient ICT through the maximal use of Big Data.
実用化イメージ

(i) Analysis of market trend or research trend through intelligent text mining, (ii) Discovery of potential needs and risks from opinions in social media, (iii) Management of knowledge in a company by analyzing internal documents, etc.

Researchers

Center for Language AI Research

Kentaro Inui

[Social Capital]

Nonprofit Organizations and Social Capital

NEXT
PREV
特徴・独自性
  • Nonprofit organizations strive to solve community and social problems and to create new social values. Nonprofit organizations have the role to create citizenship and social capital - trust, norms and networks - in community. Social capital, an invisible and soft capital has increasingly become important to a sustainable management of an organization.
  • We hope to conduct collaborative research with willing corporations and organizations for measuring social capital at community/organizational levels and for making practical proposals on how to create and utilize social capital with viewpoints of partnership with nonprofit organizations and human resource development.
実用化イメージ

Researchers

Graduate School of Economics and Management

Yuko Nishide

[social entrepreneur]

Theory and practice of energy design to drive decarbonization

概要

An indispensable function for decarbonized driving is energy data analysis, an energy car navigation system with both high spatial and temporal resolution. Higher spatial resolution facilitates the recharging and discharging of electric cars and inter-regional energy exchange. With the addition of up-to-the-minute energy data with high temporal resolution, it is possible to rationally and optimally combine the fluctuating output of renewable energy with the consumers. Data analysis, system design, and operation will lead to a carbon-neutral society.

従来技術との比較

Japan's first regional energy supply and demand database has been developed, allowing for detailed design of sustainable and resilient regional energy infrastructure layout and operation based on analysis of the current energy status of cities, towns, and villages nationwide.

特徴・独自性
  • Research experience as a Fulbright Scholar in the U.S. and familiarity with examples of social implementation in Europe.
  • Data-driven innovation research approach based on a vast regional energy supply and demand database.
  • Emphasis on regional fieldwork as a social entrepreneur solving social issues.
実用化イメージ

Putting Theory into Practice. Helping to build sustainable energy systems for new community development. Including the background of the local community, listening to the opinions of the residents, and guiding them to discussions that are relevant to today's issues. Thinking globally and acting within the community.

Researchers

Graduate School of Engineering

Toshihiko Nakata

[social walfare]

Economics of Aging

特徴・独自性
  • I investigate on the economics of aging, the optimal social welfare policy, low fertility and so on not based on the historical and systematic approach but based on the neo-classical economic theory. I also use econometric method and statistical approach. I often estimate the future projections of the population, public finance, magnitude of private markets, the results of public policies.
  • I also research on the comparative studies on East Asia (Japan, China, Korea, Taiwan) and European (especially Scandinavian countries). I provide statistic data and information on the economic and political systems on the aging in Japan.
実用化イメージ

The future estimation on the financial status , market caused by low fertility and aging. The effective management of the medical institutions, social welfare systems, gender equality societies for the central and local government, research institutions, public enterprises, and financial Institutions.

Researchers

Graduate School of Economics and Management

Hiroshi Yoshida

[Sodium]

“HYDRIDE" Researches for Energy Applications

NEXT
PREV
特徴・独自性
  • This group is engaged in basic and applied researches of "hydrides" for practical use in hydrogen energy system. The main subject is the exploration of advanced hydrogen storage materials which support hydrogen energy technologies such as fuel cells. Currently, we synthesize a wide variety of novel hydrides composed of lightweight metals with specific nano-structures using advanced techniques for crystal and electronic structure analyses. In addition to the hydrogen storage, we develop the wide research fields related to hydrides, such as fast lithium ionic conductors.
実用化イメージ

Besides the contributions in industrial progress through the material development for future hydrogen energy system and next-generation secondary battery, we positively provide technical assistance to organizations and companies concerned about our findings.

Researchers

Advanced Institute for Materials Research

Shin-Ichi Orimo

[SOFC ]

Development of Renewable Energy Systems for Sustainable Development Society

NEXT
PREV
特徴・独自性
  • Development of renewable energy systems as well as research on high efficient energy conversion systems is a key technology to solve the global-scale environmental destruction and energy problems. We are working on the research on the advanced technology of renewable energy such as solar energy and hydrogen. Topics of research are two of the following roughly separately. 
(1) Development of highly effective thermal energy systems and energy saving systems by using spectral control of thermal radiation. 
(2) Aiming at the achievement of the hydrogen energy society, we develop new energy conversion devices based on solid state ionics, and perform feasible studies for solid oxide fuel cells (SOFCs) based on mechanics of materials.
実用化イメージ

High temperature solar absorption materials
High effieciency solar-termophotovoltaic (STPV) system
Small power source for mobile electric devices based on micro-SOFC
New energy harvesting devices in harsh environment

Researchers

Graduate School of Engineering

Hiroo Yugami

Fuel Cell and Energy Storage Using Ion Conduction in Ceramics

NEXT
PREV
特徴・独自性
  • Solid oxide fuel cell is a highly efficient power generation system operating at high temperatures using ion conducting ceramics. We conduct basic and multi-aspect research on the electrochemical and mechanical behaviors of the materials for further improving the efficiency, cost, and reliability of solid oxide fuel cells. We are also interested in the reverse operation of fuel cells which enables the storage of the electricity from renewable sources into hydrogen or methane, etc.
実用化イメージ

Researchers

Graduate School of Environmental Studies

Tatsuya Kawada

[Soft rock]

Development of the method of Baby Borehole Hydraulic Fracturing, BABHY

特徴・独自性
  • For the effective measurement of the reopening pressure in hydraulic fracturing, it is necessary to use the testing equipment with sufficiently small compliance. This limitation makes it difficult to apply the hydraulic fracturing for the measurement of the maximum stress, because the compliance of conventional equipments is generally so large. Taking account of this situation, we proposed a new concept which allows us to do the in-situ tests of hydraulic fracturing for stress measurement at so deep depths as more than 1 km. We call the concept the Baby Borehole Hydrofracturing, BABHY for short. In order to put the new concept into practice, we developed the BABHY sonde and finally we succeeded to carry out hydraulic fracturing test by using the tools in a vertical borehole of 811 m depth. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Fluid Science

Takatoshi Ito

[soft-X-ray emission spectroscopy]

Nano-Scale Total-Analysis Based on TEM

NEXT
PREV
特徴・独自性
  • Our lab develops accurate nanometer scale characterization methods of crystal structures by convergent-beam electron diffraction (<strong>CBED</strong>) and electronic structures by electron energy-loss spectroscopy (EELS) and soft-X-ray emission spectroscopy (<strong>SXES</strong>) for evaluating new functional materials. For performing crystal structure studies, we developed a new Ω-filter electron microscope and a refinement soft-ware, which can perform not only atom positions but also electrostatic potential and charge distributions. For electronic structure studies, a high-resolution EELS microscope and SXES instruments were developed.
実用化イメージ

Collaborated research of Local structures (symmetry, polarity, lattice defects) by CBED and electronic structures (bandgap, dielectric property and chemical state) by EELS and SXES on semiconductors, metals and dielectric materials are acceptable. Instructions of those analysis methods are also acceptable.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Masami Terauchi

[software]

INSTRUMENT AND METHOD FOR ANALYZING METABOLIC CONDITION OF LIVING BODY AND RECORDING MEDIUM

NEXT
PREV
特徴・独自性
  • AIMS: The invention is to analyze metabolic condition, especially in oxygen consumption and energy production in the adipose tissues of human (Patent: JP 3848818).
  • PROBLEM TO BE SOLVED: To provide an instrument and method for analyzing the metabolism condition of a living body which is constructed in such a manner that it can measure the metabolism condition of a living body correctly and easily, and a recording medium.
  • SOLUTION: A metabolism condition analyzer is provided with an input means for inputting information about the body of a subject, a control means for processing this information and an output means for outputting results of the processing. The information consists of name, age, sex, race, height, weight, bioelectric resistance value and the date and time of measurement. A data file consisting the control means stores evaluation data of a metabolic condition which is previously determined by medical judgment based on a combination of an internal respiration index and oxygen consumption and energy production in adipose tissues. These are computed by calculating the value obtained by subtracting one from a body density calculated from the height, weight of the subject and the bioelectric resistance value and then multiplying the value. Welcome to your investment or co-operation.
実用化イメージ

Researchers

Cyclotron and Radioisotope Center

Katsunori Nonogaki

[Soil Improvement]

Development of Recycling Technology for High-Water Content Sludge by Using Fiber Materials

NEXT
PREV
特徴・独自性
  • The recycling rate of construction muds and sludge is very low because the water content of these muds is very high and direct reuse of them is very difficult. Therefore, a new recycling technology for high-water content sludge has been developed in this laboratory. This technology is called "Fiber-Cement-Stabilized Soil Method", and it uses fiber materials and cement. The main feature of this method is to mix the fiber materials with the sludge, and the fiber materials included in the soil produce several geotechnical merits.
実用化イメージ

The modified soils produced by this method can be used as ground materials for reinforced embankment of the river bank and soil structures because they have several features such as high failure strength, high failure strain high durability for drying and wetting and high dynamic strength.

Researchers

Graduate School of Environmental Studies

Hiroshi Takahashi

[Solar cells]

Development of Interconnect Materials and Processes for High Performance and High Reliability Electric Devices

NEXT
PREV
特徴・独自性
  • Electronic products can be operated not only by semiconductors but also by metal interconnections attached to the semiconductors. Required properties for the metal interconnections are ohmic contact, diffusion barrier property, adhesion with semiconductors, and low resistivity, corrosion resistance, process reliability. Our group has committed ourselves to develop new metals and processes to meet the needs of wide-ranged device producers with consideration of cost performance. Topics of our research include (1) Cu alloys to self-form a diffusion barrier layer in multilayer interconnection of Si devices, (2) Cu alloys to form a reaction-doping layer in IGZO oxide semiconductors, (3) Nb alloys to achieve mechanical and thermal reliability with good ohmic property for SiC power devices, (4) Cu alloys for transparent conductive oxide such as ITO, (5) screen-printable Cu paste lines for solar cells, etc..
実用化イメージ

Our research efforts are targeted at metallization and interconnections for advanced LSI, flat panel displays, touch panels, power modules, solar cells, and other electronic devices. Collaborators include material producers, equipment vendors, and device producers in the entire value chain of electronic products.

Researchers

Graduate School of Engineering

Junichi Koike

[Solar thermal power]

Development of Renewable Energy Systems for Sustainable Development Society

NEXT
PREV
特徴・独自性
  • Development of renewable energy systems as well as research on high efficient energy conversion systems is a key technology to solve the global-scale environmental destruction and energy problems. We are working on the research on the advanced technology of renewable energy such as solar energy and hydrogen. Topics of research are two of the following roughly separately. 
(1) Development of highly effective thermal energy systems and energy saving systems by using spectral control of thermal radiation. 
(2) Aiming at the achievement of the hydrogen energy society, we develop new energy conversion devices based on solid state ionics, and perform feasible studies for solid oxide fuel cells (SOFCs) based on mechanics of materials.
実用化イメージ

High temperature solar absorption materials
High effieciency solar-termophotovoltaic (STPV) system
Small power source for mobile electric devices based on micro-SOFC
New energy harvesting devices in harsh environment

Researchers

Graduate School of Engineering

Hiroo Yugami

[Solid electrolytes]

Developing energy creation and saving materials

NEXT
PREV
特徴・独自性
  • Most innovations have been triggered by advent of new materials. We focus on to explore new inorganic materials and their synthesis routes on the basis of our knowledge about the material design and various materials processing technologies. We develop proton conducting phosphate glasses working at intermediate temperatures and narrow gap oxide semiconductors applicable in visible and NIR regions. Thin-film solar cells, fuel cells using those materials are also developing.
実用化イメージ

We focus on oxide semiconductors and proton conducting electrolytes and electrodes in order to apply them in solar cells, fuel cells, light-emitting devices. But, applicable area of our technologies is not limited in those applications.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Takahisa Omata

[Solid state physics]

Electronic properties of nanostructures and nanodevices

特徴・独自性
  • 1) We investigate interesting properties of nanostructures and develop materials and devices utilizing nanostructures.
  • 2) We have techniques and skills on low-noise electric measurements, cryogenics, nanofabrication, and data informatics. We are open to new collaborations.
実用化イメージ

Researchers

Advanced Institute for Materials Research

Tomohiro Otsuka

[Solid-Liquid Interfaces]

Development of Nano-Interface Chemistry for Materials Sciences Using Surface Forces Measurement

NEXT
PREV
特徴・独自性
  • Our research aims at developing methods, including instrumentation, for characterizing surface (or interface) at the nano-meter level. Most of our research subjects are related to the surface forces measurement, which can directly monitor the interaction between two surfaces. We study phenomena occurring at the solid-liquid interface such as adsorption and structuring of liquids. We have developed the resonance shear measurement which is a sensitive method for evaluating properties of confined liquid for nano-rheology and tribology. Twin-path surface forces apparatus we developed enabled us to study wide variety of samples such as metals, ceramics and plastics.
実用化イメージ

These methods are applicable for characterizing lubricants, nano-materials, paints, sealants, and cosmetics. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

New Industry Creation Hatchery Center

Kazue Kurihara

[solid-phase synthesis]

Synthesis of Biologically Active Cyclodepsipeptide Natural Products

NEXT
PREV
特徴・独自性
  • Cyclodepsipeptide natural products include optically active hydroxy acids as well as various unnatural amino acids and exhibit a variety of biological activity depending on the peptide sequence, chirality, and selection of the hydroxy acids. Structure-activity relationships of a synthetic library of natural products could give us significant information of not only biologically important moieties but also intact positions in the biologically active small molecules. On the basis of the former information, more potent compounds and/or peptide mimetics can be designed. The latter information can also be important for making a molecular probe that is used for exploration of a target molecule.
実用化イメージ

We study for combinatorial synthesis of natural product analogues using solid-phase.

Researchers

Graduate School of Pharmaceutical Sciences

Takayuki Doi