行のキーワード 507ワード

活性

新型コロナウイルス治療薬・消毒薬の評価

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 感染性を有する新型コロナウイルスを使用し、新型コロナウイルスに対する新規治療薬候補の評価や開発、併せて消毒剤の評価なども行っています。さらに作用機序や耐性機序に踏み込むことも可能です。ほかにもインフルエンザウイルスから薬剤耐性菌までの同時評価が必要な場合はご相談ください。これまでに国内外製薬企業、関連企業との共同研究で、臨床薬の基礎開発から臨床応用までの経験があります。
実用化イメージ

阻害剤や消毒剤などの開発・評価において、目的の微生物だけでなく、同一施設で、条件をそろえて幅広く対応でき、効果の比較が容易です。野生型だけでなく、変異型にも対応可能です。

研究者

災害科学国際研究所 災害医学研究部門 災害感染症学分野 医学研究科・医学部・大学病院・東北メディカル・メガバンク機構(兼務)

児玉 栄一  

Eiichi Kodama

活性化

がん病巣の活性化因子の探索

前の画像
次の画像
特徴・独自性
  • 主要臓器に転移を来したがん細胞は、リンパ節を摘出すると活性化する。この臨床現場で散見される事象にどんな分子が関与するのか?わたしたちの研究室では遠隔転移活性化マウスモデルを開発し、この活性化因子を探索している。このモデルではヒトのリンパ節と同等の大きさを有するMXHマウスを使用しており、 MXHマウスは当該研究室のオリジナルである。また、本モデルでの転移活性化率は100%を達成する。転移活性化分子の探索と同定は、新規薬剤の開発のみならず、がんの超早期診断が可能な新たな診断機器の開発につながるものと期待される。
実用化イメージ

製薬会社:がん活性化抑制分子や免疫活性化分子の探索から製剤化が可能
医療機器メーカー:がんの超早期診断が可能な新たな診断機器の開発

研究者

大学院歯学研究科 歯科学専攻 病態マネジメント歯学講座(顎顔面口腔腫瘍外科学分野)

Sukhbaatar Ariunbuyan  

Sukhbaatar Ariunbuyan

活性酸素種

new気相化学種の同時定量技術・ソフトウェア

前の画像
次の画像
概要

フーリエ変換赤外線分光法 (FT-IR) を用いて、活性酸素・窒素種 (O3、 H2O2、 NOx、 HNOx)やSOx、 COx等の気相化学種を同時に定量する技術を開発しています。

従来技術との比較

標準ガスを用いた校正曲線からの密度定量は、標準ガスとして入手できない化学種に対応できない等の問題を抱えていました。
本技術は、 標準ガスの校正をせずに、20種を超える化学種の同時定量を可能にします。

特徴・独自性
  • 手軽に1クリックで同時密度定量可能なソフトウェア
  • 化学種の吸収断面積データベースを使用
  • 様々な装置関数や測定条件に対応可能
実用化イメージ

気相化学種を密度定量したいという様々なニーズに対して、直接貢献できる。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(プラズマ理工学分野)

佐々木 渉太  

Shota Sasaki

活性窒素種

new気相化学種の同時定量技術・ソフトウェア

前の画像
次の画像
概要

フーリエ変換赤外線分光法 (FT-IR) を用いて、活性酸素・窒素種 (O3、 H2O2、 NOx、 HNOx)やSOx、 COx等の気相化学種を同時に定量する技術を開発しています。

従来技術との比較

標準ガスを用いた校正曲線からの密度定量は、標準ガスとして入手できない化学種に対応できない等の問題を抱えていました。
本技術は、 標準ガスの校正をせずに、20種を超える化学種の同時定量を可能にします。

特徴・独自性
  • 手軽に1クリックで同時密度定量可能なソフトウェア
  • 化学種の吸収断面積データベースを使用
  • 様々な装置関数や測定条件に対応可能
実用化イメージ

気相化学種を密度定量したいという様々なニーズに対して、直接貢献できる。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(プラズマ理工学分野)

佐々木 渉太  

Shota Sasaki

活断層

活断層と地震ハザード評価

前の画像
次の画像
特徴・独自性
  • 地形・地質調査を通じて、活断層での地震発生履歴を解明し、甚大な被害をもたらす内陸地震の発生規模と確率を予測する研究を行っている。また、三陸海岸の数万年?数十万年の超長期の地殻変動を解明し、海溝型超巨大地震の発生サイクルの解明を目指している。さらに、大地震の続発性・相互連鎖性を説明する断層モデルを数値計算で再現し、地震の発生予測の高精度化を行っている。
実用化イメージ

活断層の調査にあたっては大規模な調査溝掘削や新しい調査・探査技術の開発が欠かせない。地質・建設コンサルタントなど土木関連企業との連携を考えたい。

研究者

災害科学国際研究所 災害評価・低減研究部門 陸域地震学・火山学研究分野

遠田 晋次  

Shinji Toda

活動パターン

new非接触方式による生体信号計測

前の画像
次の画像
概要

生体情報を完全非接触で取得するウェアレス生体信号計測に関して研究を行っています。特に、ビデオカメラで取得可能な脈波信号(映像脈波)と、室内の電波環境変化から得られる人の活動パターン(活動量)に注目し、これらを医療や健康管理に活用するための技術開発を進めています。

従来技術との比較

従来のような皮膚に接触させるセンサを用いることなく、完全非接触で心拍数などの生体情報を計測することを可能とします。

特徴・独自性
  • 映像脈波に関しては、従来の心拍数に加えて血圧値や血中酸素飽和度などを推定することを目指し、推定モデルと撮像方法の改良を通して推定精度の向上を図っています。
  • 電波による活動パターン推定では、人の移動を模した自走ロボットを用いることで、人を使ったデータ収集が不要なモデル構築を目指しています。
実用化イメージ

ウェアレス生体計測は、センサ装着が難しい対象者や環境での計測に対して有用な技術です。また、センサ装着のし忘れがないため、長期間にわたる生体データ収集などにも活用が期待できます。

研究者

サイバーサイエンスセンター 研究開発部 サイバーフィジカルシステム研究部

杉田 典大  

Norihiro Sugita

カテーテル

マイクロ・ナノマシニング技術を⽤いた低侵襲医療機器・ヘルスケア機器

前の画像
次の画像
特徴・独自性
  • 精密機械加工技術、MEMS(微小電気機械システム)技術などを用いて小さくとも様々な多機能を実現する新たな医療機器、ヘルスケア機器を開発しています。体内で検査治療を行う内視鏡やカテーテルを高機能化するほか、今までにない新たな医療機器を開発し、より精密で安全な検査・治療、新たな検査・治療の実現を目指します。また、体表に装着する薄く軽い高機能なデバイスにより、場所や時間の制約のない新たなヘルスケアを目指します。
実用化イメージ

基礎研究の他、実用化を目指し臨床医師および医療機器メーカーをはじめとした企業と協力して開発を進めています。また、大学から企業への橋渡しの目的で大学発ベンチャー企業を起業し共同した開発を進めています。

研究者

大学院医工学研究科 医工学専攻 医療機器創生医工学講座(ナノデバイス医工学分野)

芳賀 洋一  

Yoichi Haga

能動ファイバセンサ

前の画像
次の画像
特徴・独自性
  • 本研究における多機能ファイバの特徴として、デバイスに必要な部材を全て内包するプレフォームを設計することで、熱延伸処理によるロール巻き取りが可能である。このため従来技術で問題点となる微細で複雑な積層構造をファイバに新たに追加する必要がなく、量産性も高いため製造コストを大幅に削減することも可能である。さらに容易にファイバの線径を制御して微細化できるため、ウェアラブルデバイスなどにも応用が可能である。
実用化イメージ

応用例として、微小空間でも検査可能な能動カテーテルが挙げられる。光ファイバによるカメラ機能や電気化学センサの付与が可能である。着用者の生体情報を常にセンシングできるウェアラブルデバイスも挙げられる。

研究者

高等研究機構学際科学フロンティア研究所 新領域創成研究部 デバイス・テクノロジー研究領域

郭 媛元  

Yuanyuan Guo

家庭支援

子育て支援

前の画像
次の画像
特徴・独自性
  • 子どもとかかわる保護者、保育者自身の「大人のキャリア発達」を研究テーマとしています。家族システム論、保育環境論をベースに、子どもとかかわる大人の感情制御、環境設定などについて文化・社会、時代・歴史的背景を踏まえて研究を進めています。 特徴としては,Bronfenbrennerの生態学的アプローチに基づき,親や子どもの個体内要因のみでなく,生活体をシステムとしてアセスメントする点にあります。
実用化イメージ

特に乳幼児を中心とした子育て家族にかかわる、保育、子育て支援関係者あるいは、子育て家族にかかわる教育、福祉、司法、医療、産業領域におけるコンサルテーション。

研究者

大学院教育学研究科 総合教育科学専攻 教育心理学講座(教育心理学)

神谷 哲司  

Tetsuji Kamiya

花粉形成

イネ科作物の高温・低温障害の克服法

前の画像
次の画像
特徴・独自性
  • 地球規模での温暖化は、コムギやオオムギなどの収量に多大な影響を及ぼしている。また、異常気象は局所的な低温ももたらし、東北地方でのイネの冷害は有名である。これら主要作物の温度障害は、いずれも花粉形成の過程が最も脆弱であり、ストレスにより正常花粉ができなくなる。本技術は、植物ホルモンのオーキシンやジベレリン、さらにはカーボンソースを適切な時期に散布することで、これら障害を完全に克服するものである。
実用化イメージ

適切な植物ホルモン等を利用することで異常気象による作物の収量低下を防ぐことができ、農作物の安定的な生産に資する。

研究者

大学院生命科学研究科 分子化学生物学専攻 分子ネットワーク講座(分子遺伝生理分野)

東谷 篤志  

Atsushi Higashitani

可変アンテナ

イノベーションの基盤となる電磁波応用技術の研究開発

前の画像
次の画像
特徴・独自性
  • 電磁界理論,計算電磁気学,およびアンテナ工学の視点から,幅広く研究を行っている.これまでの研究内容は以下の通り.
  • ・人体とアンテナの相互作用の数値シミュレーション
  • ・無線電力伝送用大規模アレーアンテナの数値解析
  • ・高セキュリティのアレーアンテナの設計法
  • ・機械駆動の可変アンテナの研究
  • ・3Dプリンタを用いた広帯域の電波散乱体の設計
  • ・高精度な電流分布推定法の構築
実用化イメージ

アンテナ・通信メーカーとの産学連携実績が多数ある.他にも,材料メーカー,インフラ業界,独法などとの連携実績もあり,電磁波が応用できる分野であればどこでも連携は可能.

研究者

大学院工学研究科 通信工学専攻 波動工学講座(電磁波工学分野)

今野 佳祐  

Keisuke Konno

ガラス

new熱を良く通すガラス

前の画像
次の画像
概要

熱を通しにくい材料として知られるガラス高い熱伝導性を与え新分野への応用を目指します。

従来技術との比較

高熱伝導性MgO析出屈折率マッチングの戦略をとることにより、ガラスらしさを保ったままの高熱伝導な透明ガラスの開発に成功しました。

特徴・独自性
  • 透明
  • 自由な成型
  • 熱伝導率 ~ 3 W/(m K) 【窓ガラスの3倍】
実用化イメージ

ガラスを利用した放熱マネジメント【放熱ガラス基板・レンズ・ファイバーなど】

研究者

大学院工学研究科 応用物理学専攻 応用物性物理学講座(光物性学分野)

寺門 信明  

Nobuaki Terakado

ガラス緩和挙動

構造相転移・相変態組織形成学・エネルギー材料

前の画像
次の画像
特徴・独自性
  • 構造相転移・相変態組織形成学を基軸にし、材料組織構造を制御することにより新機能を発現する材料を研究開発することを目指します。基盤材料のみならず、革新電池用エネルギー材料の開発にも重点をおきます。
実用化イメージ

蓄電池に関わる事業などは共同研究可能です。

研究者

金属材料研究所 物質創製研究部 構造制御機能材料学研究部門

市坪 哲  

Tetsu Ichitsubo

カラフル

毒性のある遷移金属を含まないカラフルな酸化チタン顔料

概要

ニ酸化チタン着色粒子
https://www.t-technoarch.co.jp/data/anken/T19-849.pdf

従来技術との比較

遷移金属化合物は多彩な色を示すことで知られている。これまで、遷移金属イオンのドープにより、白色の酸化チタンを着色させることは可能であるものの、遷移金属に由来する生体毒性を回避することが難しい。

特徴・独自性
  • 本発明では、遷移金属を含まず、白色、黄色、赤色、グレー、緑色、紫色、黒色、肌色等、様々な色を有する酸化チタン無機顔料を実現した。
実用化イメージ

生体毒性が課題となる化粧品分野等での酸化チタン顔料の新規応用が期待される。

研究者

多元物質科学研究所 無機材料研究部門 環境無機材料化学研究分野

Yin Shu  

Yin Shu

加齢

脳MRIデータベースを用いた発達、加齢に関する研究

前の画像
次の画像
特徴・独自性
  • 遺伝要因、生活習慣がそれぞれ脳発達、加齢にどのような影響を与えるかを明らかにすることで、生涯健康脳の維持を目指す。これが明らかになることで、ある遺伝的素因を持つ個々人がどのような生活習慣を送ると、生涯健康脳が維持できるかが明らかになり、認知症等、種々の疾患の一次予防、二次予防が可能になる。更に、独自性は世界でも屈指の大規模脳MRI データベースを用いる点にある。
実用化イメージ

運動、睡眠、食品、楽器、その他の趣味に関わる業種といった、種々の生活習慣に関わる製品を開発している業界が該当すると考えられる。

研究者

スマート・エイジング学際重点研究センター

瀧 靖之  

Yasuyuki Taki

new加齢に関連する脳疾患を鑑別可能な新しい血中バイオマーカー

前の画像
次の画像
概要

本発明は、加齢に関連する脳疾患を鑑別可能な血中バイオマーカーに関する。脂肪酸結合タンパク質(FABPs)がレビー小体病のバイオマーカーとして機能することを発見し、加齢に関連する脳疾患群と健常対照群で血液中のFABPsレベルを測定した。その結果FABPsが各疾患を高い精度で識別可能であることを示した。本発明により、微量採血で済む血液バイオマーカーの利用により、脳疾患の早期予測や診断が可能になる。

従来技術との比較

脳疾患の確定診断には脳脊髄液採取やPET検査等の侵襲的方法が用いられる。血液バイオマーカーの開発には病態に関与する物質の特定が困難であった。本発明は同問題を解決し、新たな血液バイオマーカーを提供する。

特徴・独自性
  • 本発明の特徴は、FABPsがレビー小体病のバイオマーカーとして機能することを初めて明らかにしたことである。具体的に、FABPsがアルツハイマー病AD、パーキンソン病PD、れDLB、軽度認知機能障害MCIの患者と健康な対照群で有意に差異が認められることを実証し、各疾患を高い精度で鑑別することが可能である。
実用化イメージ

本発明は、加齢に関連する脳疾患の鑑別技術を提供することで、高齢化社会における認知症や運動障害の早期治療介入を克服することが可能である。また本発明は微量採血で済むため患者の負担やコストを低減可能である。

研究者

大学院薬学研究科 生命薬科学専攻 生命解析学講座(薬理学分野)

川畑 伊知郎  

KAWAHATA Ichiro

がん

がん薬物療法開発/分子診断・分子治療技術の開発

前の画像
次の画像
特徴・独自性
  • 分子診断に関しては、網羅的遺伝子発現解析や全エクソンシークエンスによる乳癌や大腸癌の治療選択に重要な予後予測法の開発、治療薬選択、発癌リスクに関わる独自の分子マーカーの探索研究を行い、臨床研究による検証研究に取り組んでいる。
  • 抗がん薬の開発に関しては、新規HDAC/PI3 kinase2 重阻害剤の基礎開発(シーズ探索から非臨床試験)に取り組んでいる。
実用化イメージ

がん薬物療法に必要な新規バイオマーカーとしての診断薬や新規のがん分子標的治療薬としての用途が想定される。

研究者

大学院医学系研究科 医科学専攻 内科病態学講座(臨床腫瘍学分野)

石岡 千加史  

Chikashi Ishioka

X線位相イメージングによる高感度医用診断装置の開発

前の画像
次の画像
特徴・独自性
  • 通常のX線透視撮影は生体軟組織などのX線をあまり減衰させない構造に対して明瞭なコントラストを生成しない。X線が物質を透過するとき、わずかに屈折により曲げられる。通常のX線透視撮影では、X線は直進していると近似しているが、この屈折を検出・画像化することで、軟組織に対する感度が大幅に改善される。このような撮影を、X線透過格子を用いるX線Talbot 干渉計あるいはX線Talbot-Lau干渉計により実現している。
実用化イメージ

すでに、軟骨描出能を使ったリウマチ診断、および、乳がん診断(マンモグラフィ)への適用を目的とした医用機器開発を進めている。他の医用用途が開拓できれば、新たな産学連携が構築できると期待している。

研究者

多元物質科学研究所 計測研究部門 量子ビーム計測研究分野

百生 敦  

Atsushi Momose

血管新生の分子制御

前の画像
次の画像
特徴・独自性
  • 血管新生は、がん、眼内血管新生病、粥状動脈硬化などの発症・進展と密接に関係することから、その効果的な制御法の確立が望まれている。抗血管新生薬としては、これまでにVEGFシグナル遮断薬が上市されているが、正常血管の障害に基づく副作用が問題となっている。当該研究者は、血管新生の分子機序に関する研究を展開し、血管内皮細胞が産生する血管新生抑制因子バゾヒビン1(vasohibin-1:VASH1)と、VASH1 とは拮抗的に血管新生を促進するVASH2の2つの新規分子を発見した。
実用化イメージ

V ASH1の作用増強、またはVASH2の作用阻害に基づく新たな治療法の開発を行う。VASH1タンパクを用いるか、VASH1が内皮細胞に作用して惹起する特性をリードにVASH1様活性を持つ低分子をスクリーニングしている。VASH2 については抗ヒトVASH2中和モノクローナル抗体を作成している。

研究者

未来科学技術共同研究センター 開発研究部 難治がんに対する革新的治療法の開発

佐藤 靖史  

Yasufumi Sato

癌細胞選択的核酸医薬の創製

前の画像
次の画像
特徴・独自性
  • 抗体医薬に次ぐ分子標的医薬として注目されている核酸医薬であるが、効果的な薬効発現と表裏一体的課題であるオフターゲット効果と呼ばれる副作用の低減がその実用化に向けた重要な解決すべき問題点として指摘されている。我々は従来の方法論とは全く異なる、標的がん細胞内でのみ薬効を発現し、正常細胞内では副作用を発現しない“がん細胞選択的核酸医薬”という新しい研究戦略を提案し、その実現に向け研究を推進している。具体的には増幅期のがん細胞に特徴的な低血流に基づく細胞内低酸素状態、ハイポキシアに注目し、ハイポキシアにより誘起される細胞内pH低下をトリガーとした選択的薬効発現を実現する人工核酸創製に取り組み、核酸塩基の配向変化に基づく標的RNA認識のOn-Off スイッチングを実現した。現在東京医科歯科大学横田隆徳グループとの共同研究により、動物レベルの実証実験に取り組み、良好な初期的データを得ている。標的細胞選択的薬効発現という研究戦略は世界的にも類がなく、高い独自性を有しており、世界的に高く評価されている。
実用化イメージ

上記、がん細胞選択的核酸医薬創製の研究戦略は、幅広いハイポキシア状態疾患への適用が可能で、現在脳梗塞・心筋梗塞への展開も検討しており、次世代分子標的薬剤としての高い可能性を有していると評価されており、産学連携により早期実証実験に繋げていきたい。

研究者

多元物質科学研究所 有機・生命科学研究部門 生命機能制御物質化学研究分野

和田 健彦  

Takehiko Wada