行のキーワード 143ワード

ナノ粒子

有機−無機ナノハイブリッド材料の創製と応用

前の画像
次の画像
特徴・独自性
  • 液晶等高分子化合物と、金属、セラミックス等のナノ粒子のハイブリッド材料を、原子、分子レベルで構造、組成、表面特性を制御して、創製する。特に前者が有する高い加工性、適応性を、後者の特徴的な性質をカバーするような、相反機能(トレードオフ)を解消するようなナノハイブリッド材料を合成し、その応用の研究を実施している。この原子レベルでのハイブリッド化を可能にした手法によれば、無機ナノ粒子に温度応答による流動性という新たな性質を付加することに成功している。この手法を産業界で活用した企業や団体との共同研究を希望する。
実用化イメージ

研究者

国際放射光イノベーション・スマート研究センター 基幹研究部門 多元計測スマートラボ

村松 淳司  

Atsushi Muramatsu

磁石は地球を救う!-高性能永久磁石材料の開発(エネルギー・資源問題の解決に向けて)-

前の画像
次の画像
特徴・独自性
  • 永久磁石材料の高性能化と新材料開発を行っている。これまでの成果に未分離混合希土類-Fe-B系焼結磁石、HDDR現象による高保磁力希土類磁石粉末、再結晶集合組織による高性能Fe-Cr-Co系磁石の開発などがある。最近ではNd-Fe-B系磁石におけるDyの削減技術の開発や、永久磁石の自然共鳴がGHz 帯にあることに着目した新しい電磁波吸収体ならびにナノ粒子技術による高周波磁性材料の開発も行っている。
実用化イメージ

業界としては磁性材料に興味または生産している素材・材料関連、自動車関連、電気・電子関連、化学関連企業など。

研究者

大学院工学研究科 知能デバイス材料学専攻 情報デバイス材料学講座(スピン情報材料学分野)

杉本 諭  

Satoshi Sugimoto

超臨界水熱合成法による有機・無機ハイブリッドナノ粒子合成

前の画像
次の画像
特徴・独自性
  • 超臨界水を反応場とする有機修飾ナノ粒子の合成技術を発明した。超臨界反応場では有機分子と金属塩水溶液が均一状態で反応し、水分子が酸/塩基触媒として働き、有機修飾金属塩ナノ粒子を合成できる。このハイブリッドナノ粒子は有機分子を表面に有するため、溶剤に高濃度分散させてナノフルイッド、ナノインクとしたり、高分子とハイブリッド化させて有機・無機材料の機能を併せ持つ材料を創成することができる。
実用化イメージ

窒化ホウ素の有機修飾ナノ粒子はポリマーに分散させて、高熱伝導材料として使用できる。また酸化チタン、酸化ジルコニウムの有機修飾ナノ粒子は、ポリマーなどに高濃度分散させることにより高屈折率レンズ製造に応用できる。また、高活性ナノ触媒としての利用も期待される。現在、本技術に基づいて、超臨界ナノ材料技術開発コンソーシアム(参加企業およそ80 社)が設立されており、産業への応用や国家プロジェクトの提案などを積極的に推進している。

研究者

高等研究機構材料科学高等研究所 ソフトマテリアルグループ

阿尻 雅文  

Tadafumi Ajiri

低コスト・高スループットナノ材料プロセッシング

前の画像
次の画像
特徴・独自性
  • 従来の液相における材料合成では、溶媒に溶解する原料を大前提としているために、材料選択性が限られるだけでなく、洗浄・廃棄物など様々な問題があります。原料が溶媒に溶解しない物質であれば、原料選択性の広がりによりプロセッシングの枠が格段に広がります。例えば、金属原子と酸素原子で構成された安価な酸化物が原料に利用できれば、環境負荷とコストの低減できる可能性があります。従来にない新しいプロセッシングにより、新しい材料を作成してきました。
実用化イメージ

ナノ粒子関連材料の低コスト・高環境性・高スループット材料プロセッシングの開発で、これまでに多くの産学官連携(JST、 NEDO)を推進してきました。

研究者

大学院工学研究科 応用化学専攻 分子システム化学講座(極限材料創製化学分野)

林 大和  

Yamato Hayashi

難水溶化という従来の逆の分子設計に基づく新規ナノ薬剤の創出

前の画像
次の画像
特徴・独自性
  • プロドラッグ分子のみで構成されるナノ粒子『ナノ・プロドラッグ』を提唱し、疾患部位への高効率なドラッグデリバリーが可能な抗がん剤や点眼薬の開発を行っています。『ナノ・プロドラッグ』は、難水溶性にする薬剤設計指針に基づき化合物合成したプロドラッグ分子を、独自の有機ナノ粒子作製手法である『再沈法』に共することで、粒径100 nm以下で制御できます。現在、薬理効果の評価、生体内・細胞内動態に取り組んでいます。
実用化イメージ

『再沈法』は薬剤化合物に限らず、様々な有機分子をナノ粒子化する汎用性の高い手法です。有機ナノ粒子を作製制御し評価する技術を持っており、有機ナノ粒子の物性評価に関する共同研究を希望します。

研究者

多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター 有機・バイオナノ材料研究分野

笠井 均  

Hitoshi Kasai

金ナノ粒子と生理活性天然物を利用したセンサー物質開発研究

前の画像
次の画像
特徴・独自性
  • 金ナノ粒子を使用した検査薬の担持物質として、これまではタンパク質(レクチン等)や単純な有機化合物が使用されてきた。一方、生理活性天然物は医農薬指向で研究されてきたが、多様な作用機構を応用すれば検査薬に使用可能と考えられる。これらの性質を組み合わせることで新奇センサー物質の創成が可能と予想される。
実用化イメージ

生理活性天然物の活性発現機構に着目することで、従来技術(抗体等)では検出が難しかった物質(低分子化合物・金属イオン等)の検出が可能になると期待できる。

研究者

大学院農学研究科 農芸化学専攻 生物化学講座(生物有機化学分野)

榎本 賢  

Masaru Enomoto

イオン制御プラズマによるナノ・メディカル・アグリ応用技術開発

前の画像
次の画像
特徴・独自性
  • 人の手で触ることのできるような非平衡(低温)プラズマ中のイオン、電子、活性種(ラジカル)を制御して生成する技術(イオン制御プラズマ)を開発・活用することで、ナノエレクトロニクス分野ではナノ粒子・ナノカーボン・生体分子の複合物質を創製でき、医療分野では極めて低侵襲で細胞内に薬剤(抗がん剤)や治療用遺伝子を高効率で導入することができ、さらに農業分野では農薬に代わって殺菌を行うことができる。
実用化イメージ

イオン制御プラズマを、人に優しい低侵襲・高効率の遺伝子・薬剤導入装置、自然に優しい農薬不使用栽培システム、地球に優しい高効率電池電極材料創製等に応用する研究を行っている。プラズマの新たなナノ・メディカル・アグリ応用技術を産業界で活用したい企業や団体との共同研究を希望する。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(プラズマ理工学分野)

金子 俊郎  

Toshiro Kaneko

マイクロ波を利用した機能無機材料プロセッシング

前の画像
次の画像
特徴・独自性
  • マイクロ波は化学反応の駆動力としても注目されています。材料プロセッシングにおいては、単なる省エネルギー加熱としての特徴のみならず、反応促進効果や非平衡反応の進行が認められ、新素材を生み出す手法として期待できます。当研究室では、ミリ波からセンチ波に至るマイクロ波を駆使し、雰囲気制御を必要としない簡便な窒化物コーティング法や、サーメット焼結などの粉末冶金技術、金属ナノ粒子合成法を開発しています。
実用化イメージ

マイクロ波を利用した窒化物コーティング法は、オンサイトかつ短時間の成膜を可能にし、歯科インプラント材や宝飾品、切削工具等、チタン合金や各種セラミックス、硬質材料などに適用できます。

研究者

滝澤 博胤  

Hirotsugu Takizawa

金属錯体制御によるナノ構造制御

前の画像
次の画像
特徴・独自性
  • ナノ材料の特異な物性を工業材料に応用するには、目的とする物性を最大限に発揮する組成のみで材料を構成する技術、粒界や欠陥部位等を極力低減し耐腐食性等を向上させる技術、表面特性を発現可能とするための表面の単原子分子レベルでの制御技術、等が必要である。我々は、原料液中の金属錯体構造や状態を計算と機器分析で制御し、還元析出時の反応速度を制御することで構造や組成が均質な合金ナノ粒子を合成する技術、金属ナノ材料実用化の障害を除去する技術、等の研究開発を行っている。
実用化イメージ

触媒化学等を含む化学工業や電子産業等、ナノ材料の表面物性が大きく影響する産業界に対して、材料の表面及び状態制御に関する連携が可能と考えている。

研究者

大学院環境科学研究科 先進社会環境学専攻 エネルギー資源学講座(環境共生機能学分野)

高橋 英志  

Hideyuki Takahashi

new多元系酸化物ナノ粒子からなる高活性触媒開発

前の画像
次の画像
概要

多種の金属元素からなる多元系酸化物は、近年触媒材料として注目される材料である。当研究グループでは最近、多種の金属元素からなる多元系酸化物ナノ粒子の合成法を確立した。得られた触媒は、高活性な電気化学触媒(電極触媒)材料、あるいは物質・エネルギー変換反応を進行させる触媒として機能することが期待できる。

従来技術との比較

従来研究では、多元素酸化物のナノ粒子化は困難であったが、本研究では粒子径の制御された単分散ナノ粒子の合成に成功した。

特徴・独自性
  • 従来法では合成できなかった多元系酸化物ナノ粒子が合成できる
  • 目的とする反応に応じて、様々な金属元素・組成を有するナノ粒子を設計可能
  • 従来触媒では達成できなかった活性・安定性を有すると期待できる
実用化イメージ

高効率な電気化学的物質・エネルギー変換反応、選択的な物質変換(バイオマス等)反応を実現する触媒材料として、環境・エネルギー問題に貢献できると期待できる。

研究者

多元物質科学研究所 プロセスシステム工学研究部門 超臨界ナノ工学研究分野

岩瀬 和至  

Kazuyuki Iwase

ナノレオロジー

表面力測定による材料ナノ界面科学の創製

前の画像
次の画像
特徴・独自性
  • 固- 液界面現象、そして表面間の相互作用を分子レベルで具体的に解明することを目的として研究しています。中心手段は、2つの表面間に働く相互作用力の距離依存性を直接測定する表面力測定、そして当研究分野で開発した液体ナノ薄膜の構造化挙動を高感度で評価できる共振ずり測定法です。従来困難であった不透明試料( 金属、セラミック、高分子など) が測定できるツインパス型表面力装置も独自開発し、電極界面の評価も行っています。
実用化イメージ

機能材料界面における表面電荷や吸着状態等の特性やナノレオロジー・ナノトライボロジーの評価が可能です。機械、潤滑剤、ナノ材料、塗料・シーラント、化粧品等の業種に対して共同研究・学術指導を行う用意があります。

研究者

未来科学技術共同研究センター 開発研究部 界面分子エンジニアリング

栗原 和枝  

Kazue Kurihara

ナノワイヤー

低コスト・高スループットナノ材料プロセッシング

前の画像
次の画像
特徴・独自性
  • 従来の液相における材料合成では、溶媒に溶解する原料を大前提としているために、材料選択性が限られるだけでなく、洗浄・廃棄物など様々な問題があります。原料が溶媒に溶解しない物質であれば、原料選択性の広がりによりプロセッシングの枠が格段に広がります。例えば、金属原子と酸素原子で構成された安価な酸化物が原料に利用できれば、環境負荷とコストの低減できる可能性があります。従来にない新しいプロセッシングにより、新しい材料を作成してきました。
実用化イメージ

ナノ粒子関連材料の低コスト・高環境性・高スループット材料プロセッシングの開発で、これまでに多くの産学官連携(JST、 NEDO)を推進してきました。

研究者

大学院工学研究科 応用化学専攻 分子システム化学講座(極限材料創製化学分野)

林 大和  

Yamato Hayashi

軟X線発光分光

ナノスケールでの結晶構造・電子状態解析技術の開発と応用

前の画像
次の画像
特徴・独自性
  • 透過型電子顕微鏡(TEM)で、組成・結晶構造を評価した領域の精密構造解析、物性測定を可能とするため、独自の実験装置・解析技術開発(分光型収束電子回折TEM、高分解能EELSTEM、軟X線発光分光TEM)と、その物性物理学への基礎的応用(フラレン、ナノチューブ、ボロン化合物、GMR物質、準結晶等)を行っている。また、東北大オリジナルの軟X線発光分光装置の実用化を目指し、企業等との共同研究開発を継続中。
実用化イメージ

半導体、誘電体、金属などの顕微解析による構造・物性評価に関する共同研究や、分析技術に関する学術指導が想定される。

研究者

多元物質科学研究所 計測研究部門 電子回折・分光計測研究分野

寺内 正己  

Masami Terauchi

難加工性金属

機能性結晶材料と結晶成長技術の開発

前の画像
次の画像
特徴・独自性
  • 融液からの結晶成長技術を利用した新規の機能性結晶材料を開発することを特徴とした研究を行っている。具体的には、シンチレータ材料・光学材料・圧電材料・熱電材料・金属材料を対象物質として研究を行っている。さらに、独自の結晶成長技術を用いた新規機能性材料のバルク単結晶化や難加工性金属合金の線材化技術などを開発している。
実用化イメージ

シンチレータや圧電素子等の単結晶が利用されている検出器や光デバイス、電子機器向けの新規材料探索や材料の高品質化に貢献できる。さらに、融液の直接線材化技術を用いた様々な難加工性合金の細線化が可能である。

研究者

金属材料研究所 材料設計研究部 先端結晶工学研究部門

横田 有為  

Yui Yokota

軟岩

各種環境に対応した大深度地殻応力計測技術

特徴・独自性
  • CO2の地中貯留、深海底面下にあるメタンハイドレート層からのメタンガス生産、地熱エネルギー抽出などのフロンティア地殻工学、さらには、原子力発電所の耐震設計等への応用を目的として、対象地層に作用する地殻応力を孔井を使って定量的に評価するための方法を開発している。これによれば、地表面ないし海表面からキロメートル級の深度、高温環境さらには固結のみならず未固結岩体への適用が可能である。特にBABHYと名付けた方式については、800 mという実用深度での適用実験に成功した。また、この業績に対して、国内岩の力学連合会論文賞、米国岩石力学協会論文賞などを受賞した。これらの技術を産業界で活用したい企業や団体との共同研究を希望する。
実用化イメージ

研究者

流体科学研究所 附属統合流動科学国際研究教育センター 地殻環境エネルギー研究分野

伊藤 高敏  

Takatoshi Ito

軟弱地盤

CO2

超臨界二酸化炭素による洗浄ならびにクリーニング

概要

高圧のCO2の浸透力と溶解力ならびに高膨張性を利用した、本質的なドライクリーニング、洗浄・再生技術

従来技術との比較

本質的なドライ・乾式の洗浄で、ナノ空間への浸透性も高い。また無酸素状態での洗浄か可能。

特徴・独自性
  • 超臨界状態のCO2を溶媒とした洗浄プロセス、液体溶媒を利用しない本質的なドライクリーニングである。液体を用いないことから乾燥工程が不要で、毛管応力による構造体の収縮も抑制できる。微細構造物の洗浄・再生が可能で、高性能フィルターの再生技術は、一部実用化されている。
実用化イメージ

精密機器。フィルターを利用する空調機器機械メーカー。洗浄の逆プロセスでは染色も可能になる。文化財の保存にも利用可能。

研究者

未来科学技術共同研究センター 開発研究部 超臨界ナノ材料技術の社会実装

猪股 宏  

Hiroshi Inomata

二酸化炭素

二酸化炭素とジオールからの直接ポリマー合成用触媒プロセスの開発

前の画像
次の画像
特徴・独自性
  • 二酸化炭素とジオールから一段階かつ触媒的ポリカーボネート合成に有効な酸化セリウムと2−シアノピリジンからなる触媒系を見出した。酸化セリウムは二酸化炭素及びアルコールの活性化に有効であり、2−シアノピリジンはポリカーボネート生成により生じる水を水和反応により効率的に除去し、平衡を生成物側に有利にすることで反応を促進する。さらに、バイオマスからのジオール合成技術を組み合わせることで、グリーンなポリカーボネートを合成可能になる。
実用化イメージ

本技術は二酸化炭素の直接変換に有効であり、安価で安全な二酸化炭素の有効利用及び排出抑制に寄与できる触媒技術である。二酸化炭素の濃縮技術と組み合わせることで、大きな効果が期待される。

研究者

大学院工学研究科 応用化学専攻 環境資源化学講座(エネルギー資源化学分野)

冨重 圭一  

Keiichi Tomishige

メタン菌カソード電極を利用した微生物燃料電池

前の画像
次の画像
特徴・独自性
  • 本微生物燃料電池は、カソード電極に、これまでの方法で用いられている白金などのレアメタルではなく、微生物のメタン菌を使用することで、酸素から水を得るのではなく、二酸化炭素をエネルギーガスのメタンガスに変換しながら、電流を得る新しい電池である。 すでに、高温メタン菌カソード電極では500 mW/m2を達成した。
実用化イメージ

CO2をCH4に変換し、電流も得られるため、大量にCO2排出する場所や、高濃度有機物が蓄積した場所で持続的に電気エネルギーを獲得したい企業
現状の出力では、センサー等技術に利用できると考えている。

研究者

大学院農学研究科 生物生産科学専攻 動物生命科学講座(動物環境管理学分野)

多田 千佳  

Chika Tada

ヒトの五感に訴える新製品・新分野を開発-亜臨界溶媒分離法における実験と理論の開発―

前の画像
次の画像
概要

超臨界/亜臨界抽出分離技術とは、水や二酸化炭素等の物質を高圧・高温にした際に、それらが液体と気体の両方の性質を併せ持った流体(超臨界/亜臨界流体)となることを利用し、その流体を用いてこれまで分けられなかった様々な物質を抽出分離できる技術です。特に亜臨界抽出では、より温和な条件での抽出分離を実現しています。有機溶剤を使用しないグリーンな抽出分離プロセスや装置、理論の研究開発を行っています。

従来技術との比較

開発した亜臨界溶媒分離法は,在来型の蒸留・抽出・分離等の化学工学プロセスとは異なり,大幅なスケールダウンを実現できることがメリットです。

特徴・独自性
  • 水,エタノール,二酸化炭素等の環境溶媒のみを製造工程に用いることができる
  • SDGsの推進
  • 日本発の医薬食品・飲料・化粧品・化成品等の製造工程のグリーンイノベーション
  • これまでに分離できなかった、利用できていなかった有用成分の利活用
実用化イメージ

低極性・高極性化合物や沸点の異なる化学物質の分離に長けています.クロマト法の精密性には及びませんが,物質群としての分離・分画操作には向いています.医薬食品・飲料・化粧品・化成品等の分野に応用できます。

研究者

大学院工学研究科 附属超臨界溶媒工学研究センター 溶媒要素技術部

大田 昌樹  

OTA Masaki