行のキーワード 106ワード

ライフサイクルアセスメント

エコマテリアルプロセス

前の画像
次の画像
特徴・独自性
  • 溶融鉄合金・スラグの熱力学的性質、反応速度論、複合酸化物の相平衡など、鉄鋼を中心とした金属製造プロセスに関する物理化学的基礎研究、金属スクラップや廃棄物リサイクルの熱力学、スラグを利用した炭酸ガス固定化等、環境関連の研究を行っている。最近では、従来行ってきた素材製造プロセス工学に基礎を置く研究手法に、計量経済学、LCA、物質フロー分析などを融合させ、他に類を見ない独特の環境研究を展開している。
実用化イメージ

高炉、電炉鉄鋼メーカーとは従来より強く連携して研究を進めてきたが、スラグ等製錬副生物の高度資源化のために、非鉄メーカー、廃棄物中間処理事業者、行政とも連携していきたい。

研究者

未来科学技術共同研究センター 開発企画部

長坂 徹也  

Tetsuya Nagasaka

サプライチェーンを通じた資源利用と関連するリスクの可視化

前の画像
次の画像
特徴・独自性
  • マテリアルフロー解析、産業連関モデルに基づくサプライチェーン解析により資源の流れを明らかにし、資源採掘・精錬・輸送に関わるサプライチェーンの各拠点、経路の各属性別リスクデータとの融合を行い、我が国の科学技術イノベーション政策、資源安全保障に寄与する知を生み出します。
実用化イメージ

これまで共同研究・連携を行った経験があるのは鉄鋼産業、自動車産業です。省資源化技術導入による環境影響評価を行いたい行政機関や事業者との連携も積極的に行っていきたいと思っております。

研究者

大学院環境科学研究科 先進社会環境学専攻 環境政策学講座(環境・エネルギー経済学分野)

松八重 一代  

Kazuyo Matsubae

ライフサイクル分析

サプライチェーンを通じた資源利用と関連するリスクの可視化

前の画像
次の画像
特徴・独自性
  • マテリアルフロー解析、産業連関モデルに基づくサプライチェーン解析により資源の流れを明らかにし、資源採掘・精錬・輸送に関わるサプライチェーンの各拠点、経路の各属性別リスクデータとの融合を行い、我が国の科学技術イノベーション政策、資源安全保障に寄与する知を生み出します。
実用化イメージ

これまで共同研究・連携を行った経験があるのは鉄鋼産業、自動車産業です。省資源化技術導入による環境影響評価を行いたい行政機関や事業者との連携も積極的に行っていきたいと思っております。

研究者

大学院環境科学研究科 先進社会環境学専攻 環境政策学講座(環境・エネルギー経済学分野)

松八重 一代  

Kazuyo Matsubae

ラット

new実験動物における脳波、心電図、自律神経信号などの生理学的計測

概要

実験動物を用いた基礎生理学の研究において、脳波、心電図、自律神経信号などを同時に計測することで、全身の動的連関を理解することに貢献する。これらの信号は、ヒトでも共通するものが多いため、有用な生理マーカーとしての指標の1つになると期待される。

従来技術との比較

これまでの生理計測では、脳のみ、心臓のみ、など単一の臓器を扱ったものであったが、本技術では、すべての信号を同時に計測できる点が強みである。

特徴・独自性
  • 中枢末梢連関を介した生体応答が、いつ、どこで、どのように生じるか、より直接的に解析し、定量的に評価できる
  • 他の分子生物学や生化学実験との融合が自由に行える
  • 3Dプリンターなど工学的な利点も活かして、標的領域を自由に選択できる
実用化イメージ

生理信号は、動物とヒトでも共通するものが多いため、臨床診断やこころの読み取りなどを目指した指標の選定、デバイス開発への貢献が期待される。

研究者

大学院薬学研究科 生命薬科学専攻 生命解析学講座(薬理学分野)

佐々木 拓哉  

Takuya Sasaki

ランドスケープ

津波被災エリアにおける土地利用管理と住民の居住地移動に関する研究

前の画像
次の画像
特徴・独自性
  • 東日本大震災による津波被災エリアを対象に、復興事業が空間変容や住民の居住地移動に及ぼした影響や、住民の満足度等を明らかにしてた。建築・都市計画・ランドスケープの境界領域において、社会学や地域コミュニティの視点を加えた参与観察などの質的調査と、現地で得られたデータを用いた量的調査を組み合わせた研究を行なっている。 人と自然のよりよい関係性を探求し、持続可能なまちづくりへつなげる方法を提案したい。
実用化イメージ

被災後の土地利用についての実践経験や、住民を交えたワークショップの経験がある。今後被災が想定されているエリアにおける事前復興の取り組み等において知見を活かすことができると考えられる。

研究者

大学院工学研究科 都市・建築学専攻 都市・建築計画学講座(講座共通)

荒木 笙子  

Shoko Araki

リアルタイム

生体用モーションキャプチャシステムの開発

前の画像
次の画像
特徴・独自性
  • 生体に関する様々な運動を非接触かつ非侵襲的に計測することが可能な生体用モーションキャプチャシステムの開発を行っています。口腔内など遮蔽された空間でも利用可能な磁気式システムでは、最新の磁気工学技術によるLC 共振型磁気マーカを利用し、外部からの磁場印加によるシステムのワイヤレス化を実現しました。さらに光学式システムでは小型軽量の赤外線反射マーカを利用し、250ヘルツにて50 箇所までリアルタイムでの同期的計測が可能なシステムの開発に成功しています。
実用化イメージ

本システムでは生体に関する様々な動作解析が可能で、非接触かつ非侵襲的な動作解析を必要とする診断・医療機器などへの応用が可能です。条件に合わせてシステムを特化することもできるので、本システムを活用したい企業や団体との共同研究を希望します。

研究者

大学院歯学研究科 附属歯学イノベーションリエゾンセンター 異分野共創部門

金髙 弘恭  

Hiroyasu Kanetaka

リアルタイム解析

計測融合シミュレーションによる複雑流れの解析に関する研究

前の画像
次の画像
特徴・独自性
  • 流れ場のもつ膨大な流体情報をリアルタイムで獲得するためのコンピュータと実験計測を融合した新しい流体解析手法である「計測融合シミュレーション」に関する研究を行っている。本手法は、流れ場の計測データと対応するシミュレーション結果の差を数値シミュレーションにフィードバックすることにより、実現象の流れを正確に再現できる。本手法は、医療分野での血流のリアルタイム可視化、自動車等の複雑形状物体周りの流れ解析、原子力配管系内流れのリアルタイムモニタリング等、複雑な流れ場を高精度かつ高効率に再現することが必要とされる問題に広く適用可能である。
  • 本研究に関して興味のある企業へ学術指導を行う用意がある。
実用化イメージ

研究者

高等研究機構学際科学フロンティア研究所

早瀬 敏幸  

Toshiyuki Hayase

リウマチ

X線位相イメージングによる高感度医用診断装置の開発

前の画像
次の画像
特徴・独自性
  • 通常のX線透視撮影は生体軟組織などのX線をあまり減衰させない構造に対して明瞭なコントラストを生成しない。X線が物質を透過するとき、わずかに屈折により曲げられる。通常のX線透視撮影では、X線は直進していると近似しているが、この屈折を検出・画像化することで、軟組織に対する感度が大幅に改善される。このような撮影を、X線透過格子を用いるX線Talbot 干渉計あるいはX線Talbot-Lau干渉計により実現している。
実用化イメージ

すでに、軟骨描出能を使ったリウマチ診断、および、乳がん診断(マンモグラフィ)への適用を目的とした医用機器開発を進めている。他の医用用途が開拓できれば、新たな産学連携が構築できると期待している。

研究者

多元物質科学研究所 計測研究部門 量子ビーム計測研究分野

百生 敦  

Atsushi Momose

力学的異方性材料

形状制約のない力学的異方性材料の簡易な弾性定数計測手法の開発

前の画像
次の画像
特徴・独自性
  • 本弾性定数計測手法は、任意の弾性定数を入力値に用いて共鳴振動解析を行い、振動実験から得られた共鳴振動数と各振動様式が解析結果と一致する入力弾性定数を逆解析的に求める手法です。材料種、材料形態および計測環境の制約を伴わない計測手法の構築を目指しており、金属材料・セラミックス材料・高分子材料・複合材料、顕微鏡サイズ材料・薄膜材料・異種接合材料および高温環境下なども研究対象としています。
実用化イメージ

本研究を発展させるためには、企業の課題と我々の課題との間のギャップを埋める必要があり、知識の相互補完なしでは目的を達成することができない研究開発テーマです。是非、抱えている課題や困難をお教えください。

研究者

大学院工学研究科 航空宇宙工学専攻 航空システム講座(材料・構造スマートシステム学分野)

山本 剛  

Go Yamamoto

力学的親和性

低ヤング率を有する新規CoCr系生体用超弾性金属材料

前の画像
次の画像
特徴・独自性
  • 一般的に使用されているステンレス鋼および従来のCoCr合金などの生体用金属材料は、生体骨より10倍もの高いヤング率を示し、インプラントによる骨の萎縮現象が問題視されている。β-Ti合金は比較的に低いヤング率を示すが、耐摩耗性が低い。本新規CoCr系合金は、低ヤング率と高耐摩耗性の両立を初めて実現した。さらに、耐食性が優れ、17%以上の超弾性歪みも示すことから、次世代生体材料として有望である。
実用化イメージ

生体骨と同程度の低いヤング率、高い耐食性と耐摩耗性および優れた超弾性特性の 4 拍子そろった本 CoCr 系生体材料は、人工関節、ボーンプレート、脊髄固定器具やステントなどへの応用が期待される。

研究者

大学院工学研究科 金属フロンティア工学専攻 創形創質プロセス学講座(計算材料構成学分野)

許 皛  

Xiao Xu

力学特性

構造制御による複合材料の多機能化と新機能付与

前の画像
次の画像
特徴・独自性
  • 科学技術の発展とともに、機械やデバイスの小型、軽量化、高性能化が求められている。当研究室では、独自装置を用いた材料創製技術、理論に基づいた数値解析技術を駆使し、種々のナノ粒子および繊維をポリマー、金属、セラミクス材料と複合化している。そして、複数の機能( 例:高強度、超軽量、発電機能、損傷検出機能、自然分解性など)を同時に発現する多機能ナノコンポジットの創製と特性発現機構の理解を得意としている。
実用化イメージ

ナノコンポジットの多機能化、新機能付与によって既存の機械やデバイスのさらなる小型化、高性能化、新機能追加による付加価値向上を目指している企業等との共同研究を希望する。

研究者

大学院環境科学研究科 先端環境創成学専攻 資源循環プロセス学講座(複合材料設計学分野)

栗田 大樹  

Hiroki Kurita

newナノスケールの構造と組成不均一性を利用した鉄鋼材料の組織制御

概要

安全性を確保しつつ、自動車の燃費改善または構造物の小型化を実現するため、最も多く使われている鉄鋼材料の高強度化が求められる。これまで合金組成や熱処理プロセス条件を変えることで材料全体の平均的な組織制御が行われてきたが、ナノスケールの組織制御が未成熟である。本研究では、これまでの実験調査で困難であったナノスケールの構造・組成不均一性の生成挙動を調査し、高強度鋼組織制御の指針構築に取り組んだ。

従来技術との比較

従来では鉄鋼材料の組織制御は経験的な条件に基づくことが多いが、本研究では熱力学・速度論・結晶学などの知識に基づき鉄鋼材料におけるナノスケールの組成・構造不均一性の挙動を解明した。

特徴・独自性
  • 様々な先端技術を組み合わせた多面的解析手法で実験調査を行い、ナノスケールの構造・組成不均一性の生成挙動を調査した。
  • 実験結果をもとに、熱力学・速度論・結晶学などの観点で解析を行うことにより、その不均一性におよぼす諸因子の影響を解明した。
  • 実験解析に留まらず、熱力学データを活用してその挙動の再現、さらに予測ができるような理論計算も同時に実施した。
実用化イメージ

鉄鋼材料の高強度化に基づき、自動車をはじめとした輸送機器の軽量化または構造物の小型化が可能となり、素材製造や輸送分野のCO2削減の観点でカーボンニュートラルの実現への貢献が期待される。

研究者

金属材料研究所 材料設計研究部 金属組織制御学研究部門

張 咏杰  

Yongjie Zhang

リコンビナント近交系マウス

膠原病の遺伝的素因を有するリコンビナント近交系マウスの開発

前の画像
次の画像
特徴・独自性
  • MRL/lprとC3H/lprマウス由来の8系統のリコンビナント近交系(RI)マウスMXH10/Mo-lpr/lprを樹立した。このRIは、腎炎、関節炎、唾液腺炎, 血管炎、自己抗体の産生等の病変を系統ごとにランダムに発症する世界で唯一のRIである。2系統のゲノムをホモの状態でランダムに保有し、遺伝子型地図をもとに各系統の表現型や投与された薬剤の影響を比較し、原因遺伝子領域の同定が可能である。
実用化イメージ

自己免疫疾患の診断・治療薬の開発。免疫チェックポイント阻害剤による免疫学的有害事象の発症メカニズムの解明と発症予防薬の開発に応用可能で、製薬会社、検査試薬会社等との産学連携が可能である。

研究者

大学院医工学研究科 医工学専攻 治療医工学講座(腫瘍医工学分野)

小玉 哲也  

Tetsuya KODAMA

リサイクル

麹菌を用いた生分解性プラスチックの分解リサイクル

前の画像
次の画像
特徴・独自性
  • カビの一種で醸造・醗酵に用いられる麹菌Aspergillus oryzaeの固体表面への生育能と、大規模な麹菌工業培養設備(100万トン/年)に着目し、麹菌による生分解性プラスチック(生プラ)の高速・高効率分解と、原料モノマー回収が可能なリサイクル技術の開発を行っている。我々は、麹菌が生プラ固体表面に生育する際に界面活性蛋白質群を大量分泌し、界面蛋白質群が固体表面に吸着した後に生プラ分解酵素を特異的に吸着し固体表面に分解酵素を濃縮することで分解を促進する新規分解促進機構を見出した。また麹菌の産生する界面活性蛋白質は、免疫応答しないことから、医療用ナノ粒子の被覆材として利用可能である。
実用化イメージ

大型発酵設備に適用した工業技術の開発、及び界面活性蛋白質群・酵素等の化成品( 医療用ナノ粒子素材等) への応用開発を展開している。

研究者

大学院農学研究科 農芸化学専攻 生物化学講座(応用微生物学分野)

阿部 敬悦  

Keietsu Abe

難処理性高分子廃棄物の化学リサイクル

前の画像
次の画像
特徴・独自性
  • PET、PVC、HIPS 等の廃プラスチックを、付加価値の高い化学物質への転換を目的に、乾式及び湿式プロセスで種々の高分子廃棄物リサイクルの研究をしている。例えば、PETの脱カルボキシル化にて、高収率でベンゼンを得ることに成功。また、難熱性プラスチックやPVC の脱ハロゲン化プロセスを開発し、炭化水素として燃料利用等を検討している。さらに、抗菌性やイオン交換特性を付与することを目的に、PVC の塩素の一部を官能基で化学修飾する研究をしている。また、HIPSの熱分解による脱ハロゲン化で、高収率でスチレンを得ることができる。これらの技術を用いて、金属・プラスチック複合物から金属とプラスチックを効果的にリサイクルする化学プロセスを構築している。
実用化イメージ

廃棄物のリサイクルプロセスの開発に付随して起こる諸問題を解決するための方法を提供することができる。

研究者

大学院環境科学研究科 先端環境創成学専攻 自然共生システム学講座(資源再生プロセス学分野)

吉岡 敏明  

Toshiaki Yoshioka

溶融塩を用いた高温素材プロセッシング

前の画像
次の画像
特徴・独自性
  • 室温で固体のイオン結晶を加熱し、高温で溶融した液体を「溶融塩」と呼ぶ。金属アルミニウムは溶融塩中での電気分解で製造されており、産業界では大量に使用されている。その溶融塩を反応媒体として利用し、レアアース、チタン、シリコン、リチウム等、化学的に活性なレアメタルの製錬、リサイクル、表面改質法を研究している。日本でも実施可能な高付加価値製品の製造技術として、溶融塩技術を変貌させることを目指す。
実用化イメージ

業界としては、非鉄金属製錬、リサイクル、表面処理に従事する業界。用途としては、活性金属(合金)製造、廃棄物処理、耐酸化性コーティング等。

研究者

大学院工学研究科 金属フロンティア工学専攻 先端マテリアル物理化学講座(材料物理化学分野)

竹田 修  

Osamu Takeda

高温高圧水中での化学反応を用いたプロセス開発、超/亜臨界流体抽出技術

前の画像
次の画像
特徴・独自性
  • これまでの研究はほとんどが水熱技術(超/亜臨界水技術など)に関連しており、超臨界流体(CO₂)と亜臨界流体(DME)の抽出技術、無機材料の合成、石炭化学、バイオマス変換、微細藻類の抽出、廃棄物のリサイクルなど多岐にわたる。また、さまざまな化学工学的応用の経験もあります。現在はリチウムイオン電池と廃プラスチックのリサイクルと化学実験の自動化と知能化に関する研究に取り組んでいる。
実用化イメージ

1. 廃リチウムイオン電池のリサイクルと貴金属の回収
2. 連続水熱装置による廃プラスチックのリサイクル
3. 非効率に利用される炭素系未利用固体廃棄物から高付加価値製品を製造する技術開発

研究者

大学院工学研究科 附属超臨界溶媒工学研究センター システム開発部

鄭 慶新  

Qingxin Zheng

エコマテリアルプロセス

前の画像
次の画像
特徴・独自性
  • 溶融鉄合金・スラグの熱力学的性質、反応速度論、複合酸化物の相平衡など、鉄鋼を中心とした金属製造プロセスに関する物理化学的基礎研究、金属スクラップや廃棄物リサイクルの熱力学、スラグを利用した炭酸ガス固定化等、環境関連の研究を行っている。最近では、従来行ってきた素材製造プロセス工学に基礎を置く研究手法に、計量経済学、LCA、物質フロー分析などを融合させ、他に類を見ない独特の環境研究を展開している。
実用化イメージ

高炉、電炉鉄鋼メーカーとは従来より強く連携して研究を進めてきたが、スラグ等製錬副生物の高度資源化のために、非鉄メーカー、廃棄物中間処理事業者、行政とも連携していきたい。

研究者

未来科学技術共同研究センター 開発企画部

長坂 徹也  

Tetsuya Nagasaka

new機能性粉体プロセスの創成とシミュレーションによる粉体プロセスの最適化

概要

粉体プロセスを自在に精緻に制御するためのツールとしてのシミュレーション法の創成を行っている。本シミュレーションによって、粉体プロセスを最適化することにより、省エネルギー化や省資源化を図っている。また、粉体プロセスの一つである粉砕操作によって発現するメカノケミカル現象を積極的に活用し、都市鉱山からの金属リサイクルやバイオマスからの創エネルギーに関する研究を展開している。

従来技術との比較

これまで予測や最適化設計できなかった粉砕や混合プロセスを粉体シミュレーションによって可能にし、粉体プロセスの予測や設計、最適化を可能にした。

特徴・独自性
  • 粉体シミュレーションを活用して粉体プロセスの予測や設計を行うこと。
実用化イメージ

粉体プロセスにおいては、実験室レベルから工業レベルへのスケールアップの方法が確立されていない。粉体シミュレーションによって、工業レベルのスケールアップ機の条件予測を可能にすること。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 機能性粉体プロセス研究分野

加納 純也  

KANO Junya