行のキーワード 106ワード

硫化スズ

環境にやさしい太陽電池のキーマテリアル:SnS

前の画像
次の画像
特徴・独自性
  • 硫化スズ(SnS)は、安価で安全な元素からなる太陽電池材料です。SnS太陽光パネルの原材料費は、例えばCIGS太陽電池の1/14です。SnSは通常p型伝導性を示すため、これまではp型SnSとn型CdS等のヘテロ接合によって太陽電池が研究されてきましたが、変換効率は5%に留まっていました。独自に開発したプロセスによりn型SnS薄膜を世界で初めて実現し、SnS太陽電池の高効率化への道を拓きました。
実用化イメージ

環境にやさしい薄膜太陽電池への応用や、赤外波長領域で用いるフォトダイオードへの応用が期待できます。実用化に向けた観点の研究に興味ある企業様との協働を期待しています。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 原子空間制御プロセス研究分野

鈴木 一誓  

Issei Suzuki

粒子集積構造

地球環境保全に貢献する粉体工学の創成

前の画像
次の画像
特徴・独自性
  • 粉体は私たちの生活に欠かすことのできない固体の存在形態であり、食品や化粧品、薬品、セラミックス、鉱工業等、様々な産業分野で用いられている。粉体を原料とする製品の性質や特性はその化学組成だけではなく、材料中の粒子充填構造にも大きく依存するため、粉砕や混合などの粉体プロセスを制御することが必要である。本研究室では、粉体プロセスを自在に精緻に制御するためのツールとしてのシミュレーション法の創成を行っている。本シミュレーションによって、粉体プロセスを最適化することにより、省エネルギー化や省資源化を図っている。
実用化イメージ

シミュレーションを活用した粉砕、混合、充填などの粉体プロセスの解析・高効率化とメカノケミカル効果を積極的に活用した都市鉱山からの金属リサイクルやバイオマスからの創エネルギーに関する研究を展開している。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 機能性粉体プロセス研究分野

加納 純也  

KANO Junya

流体

サステナブル異分野融合型混相エネルギーシステムの創成

前の画像
次の画像
特徴・独自性
  • 本研究分野では、超並列分散型コンピューティングと先端的光学計測の革新的融合研究に基づくマルチスケール先端混相流体解析手法の開発・体系化を目指している。さらに、高密度水素に代表される環境調和型エネルギーに直結した新しい混相流体システムとそれに伴うリスク科学の創成を目的とした基盤研究を推進している。特に、脱炭素P2P マルチグリッド型の相互補償を可能にする多相水素サプライチェーンの構築を目指している。
実用化イメージ

P2P Hydrogen supply chain,Elastohydrodynamic lubrication,Supercomputing of Laser melting andsputter particle formation, High pressurediecast computing / Automotive industry,Additive manufacturing

研究者

流体科学研究所 附属統合流動科学国際研究教育センター 混相流動エネルギー研究分野

石本 淳  

Jun Ishimoto

計測融合シミュレーションによる複雑流れの解析に関する研究

前の画像
次の画像
特徴・独自性
  • 流れ場のもつ膨大な流体情報をリアルタイムで獲得するためのコンピュータと実験計測を融合した新しい流体解析手法である「計測融合シミュレーション」に関する研究を行っている。本手法は、流れ場の計測データと対応するシミュレーション結果の差を数値シミュレーションにフィードバックすることにより、実現象の流れを正確に再現できる。本手法は、医療分野での血流のリアルタイム可視化、自動車等の複雑形状物体周りの流れ解析、原子力配管系内流れのリアルタイムモニタリング等、複雑な流れ場を高精度かつ高効率に再現することが必要とされる問題に広く適用可能である。
  • 本研究に関して興味のある企業へ学術指導を行う用意がある。
実用化イメージ

研究者

高等研究機構学際科学フロンティア研究所

早瀬 敏幸  

Toshiyuki Hayase

次世代環境適合技術流体実験共用促進事業 次世代流動実験研究センター 低乱熱伝達風洞

前の画像
次の画像
特徴・独自性
  • 低乱熱伝達風洞
  • 低乱熱伝達風洞は、台風並みの最大風速80m/s を有し、気流乱れ0.02% 以下と極めて低い世界トップレベルの風洞です。本風洞は、文部科学省による「先端研究施設共用促進事業」に採択され産業界へ施設の共用を進めて参りました。平成28 年度より、事業を発展させ「風と流れのプラットフォーム」として、基礎研究からイノベーション創出に至るまでの科学技術活動全般に貢献して行きます。
  • 磁力支持天秤装置
  • 世界トップレベルの風洞に模型を支柱で支持することなく磁場を用いて空中に保持できる世界最大サイズの「磁力支持天秤装置」を導入いたしました。本装置を用いることで支柱による干渉を受けることなく正味の空気力を測定することが可能となります。本装置も風洞と同様に産業界へ施設共用しており、一般利用可能な世界唯一の装置です。
  • 風と流れのプラットフォーム
  • 航空機が巡航しているような相対的に乱れのない流れや地上でのビルに当たる風など、風や流れの性質には様々な様相があります。このため風を作る装置として「風洞」と一言で言っても用途に応じて様々な風洞が存在します。また、風洞では全ての情報を得ることは難しいため今日では、スーパーコンピュータの支援を伴うことが一般的となってきました。
  • これらのことから、「風と流れのプラットフォーム」としてスーパーコンピュータ、風洞群をセットで共用に供し、分野を問わず、風と流れに関する様々なユーザニーズに対応した高度利用支援を行い、流体力学に立脚する科学技術イノベーションを協力に促進することを目指しています。
実用化イメージ

本風洞は、共同研究に限らずどなたでもご利用できます。また、リエゾン室を設置することにより利用相談、試験の支援をはじめ、風洞利用経験のない利用者へのサポートも行っています。

研究者

流体科学研究所 流動創成研究部門 宇宙熱流体システム研究分野

永井 大樹  

Hiroki Nagai

流体-構造体連成

new摺動部摩耗と焼付き発生部位に関するシミュレーション予測システムの開発

前の画像
次の画像
概要

エンジンピストンピン-コンロッド小端間の相変化を伴う潤滑油液膜流れに着目し、構造体の弾性変形と流路変化を考慮した混相流体-構造体連成解析手法を新たに開発し、高負荷条件下におけるトライボロジー特性に関するシミュレーション予測法を開発しました.その結果、摺動部における摩耗・焼付き発生部位のシミュレーション予測に成功するとともに、構成部品の特異な変形挙動が摩耗・焼付きの発生要因であることを発見しました。

従来技術との比較

流体潤滑における摩耗・焼付き発生部位の検証には計算による予測は不可能であると考えられてきましたが,本研究では摺動部における摩耗・焼付き発生部位のシミュレーション予測に成功しました.

特徴・独自性
  • スーパーコンピューターでエンジンピストンピン摺動部における摩耗・焼付き発生部位に関するシミュレーション予測に世界で初めて成功した。
  • ピストンピンの弓なり状の変形が、コンロッドエッジにおける機械接触・焼付きの原因であることを特定した。
  • ピストンピンとコンロッド双方の弾性変形ならびに非定常流路変化を伴う薄膜キャビテーション注1潤滑を考慮した、3次元混相流体-構造体連成解析手法注2の開発に成功した。
実用化イメージ

本研究手法は自動車用エンジンのみならず流体潤滑を用いた全ての摺動部品要素に適用可能であり、輸送機械・産業機械の損傷予測や構成要素の安全性指針策定に貢献します,構成要素の最適設計が可能になります.

研究者

流体科学研究所 附属統合流動科学国際研究教育センター 混相流動エネルギー研究分野

石本 淳  

Jun Ishimoto

流体解析

サステナブル異分野融合型混相エネルギーシステムの創成

前の画像
次の画像
特徴・独自性
  • 本研究分野では、超並列分散型コンピューティングと先端的光学計測の革新的融合研究に基づくマルチスケール先端混相流体解析手法の開発・体系化を目指している。さらに、高密度水素に代表される環境調和型エネルギーに直結した新しい混相流体システムとそれに伴うリスク科学の創成を目的とした基盤研究を推進している。特に、脱炭素P2P マルチグリッド型の相互補償を可能にする多相水素サプライチェーンの構築を目指している。
実用化イメージ

P2P Hydrogen supply chain,Elastohydrodynamic lubrication,Supercomputing of Laser melting andsputter particle formation, High pressurediecast computing / Automotive industry,Additive manufacturing

研究者

流体科学研究所 附属統合流動科学国際研究教育センター 混相流動エネルギー研究分野

石本 淳  

Jun Ishimoto

流体実験

次世代環境適合技術流体実験共用促進事業 次世代流動実験研究センター 低乱熱伝達風洞

前の画像
次の画像
特徴・独自性
  • 低乱熱伝達風洞
  • 低乱熱伝達風洞は、台風並みの最大風速80m/s を有し、気流乱れ0.02% 以下と極めて低い世界トップレベルの風洞です。本風洞は、文部科学省による「先端研究施設共用促進事業」に採択され産業界へ施設の共用を進めて参りました。平成28 年度より、事業を発展させ「風と流れのプラットフォーム」として、基礎研究からイノベーション創出に至るまでの科学技術活動全般に貢献して行きます。
  • 磁力支持天秤装置
  • 世界トップレベルの風洞に模型を支柱で支持することなく磁場を用いて空中に保持できる世界最大サイズの「磁力支持天秤装置」を導入いたしました。本装置を用いることで支柱による干渉を受けることなく正味の空気力を測定することが可能となります。本装置も風洞と同様に産業界へ施設共用しており、一般利用可能な世界唯一の装置です。
  • 風と流れのプラットフォーム
  • 航空機が巡航しているような相対的に乱れのない流れや地上でのビルに当たる風など、風や流れの性質には様々な様相があります。このため風を作る装置として「風洞」と一言で言っても用途に応じて様々な風洞が存在します。また、風洞では全ての情報を得ることは難しいため今日では、スーパーコンピュータの支援を伴うことが一般的となってきました。
  • これらのことから、「風と流れのプラットフォーム」としてスーパーコンピュータ、風洞群をセットで共用に供し、分野を問わず、風と流れに関する様々なユーザニーズに対応した高度利用支援を行い、流体力学に立脚する科学技術イノベーションを協力に促進することを目指しています。
実用化イメージ

本風洞は、共同研究に限らずどなたでもご利用できます。また、リエゾン室を設置することにより利用相談、試験の支援をはじめ、風洞利用経験のない利用者へのサポートも行っています。

研究者

流体科学研究所 流動創成研究部門 宇宙熱流体システム研究分野

永井 大樹  

Hiroki Nagai

流動界面

液体流動を利用した新たなエネルギー変換

前の画像
次の画像
特徴・独自性
  • 2次元材料であるグラフェンの上を1滴の水が滑り落ちる、または連続した流水が流れるときグラフェンに起電力が生じる現象があり、これまでの研究によって発生する起電力が流速と水が接触する界面の面積に比例することがわかっています。この現象を利用してエネルギー、環境分野へ展開する研究を行っています。液体の流動から機械的な変換を経ずに電気エネルギーを得ることができる独創的な研究です。
実用化イメージ

従来とは異なるエネルギー変換機構と基にしており、新たなエネルギーハーベスティング技術となる可能性があります。また従来の発電技術とは相補的な関係となるため、環境資源の有効活用に適した研究です。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(固体電子工学分野)

岡田 健  

Takeru Okada

流路変化

new摺動部摩耗と焼付き発生部位に関するシミュレーション予測システムの開発

前の画像
次の画像
概要

エンジンピストンピン-コンロッド小端間の相変化を伴う潤滑油液膜流れに着目し、構造体の弾性変形と流路変化を考慮した混相流体-構造体連成解析手法を新たに開発し、高負荷条件下におけるトライボロジー特性に関するシミュレーション予測法を開発しました.その結果、摺動部における摩耗・焼付き発生部位のシミュレーション予測に成功するとともに、構成部品の特異な変形挙動が摩耗・焼付きの発生要因であることを発見しました。

従来技術との比較

流体潤滑における摩耗・焼付き発生部位の検証には計算による予測は不可能であると考えられてきましたが,本研究では摺動部における摩耗・焼付き発生部位のシミュレーション予測に成功しました.

特徴・独自性
  • スーパーコンピューターでエンジンピストンピン摺動部における摩耗・焼付き発生部位に関するシミュレーション予測に世界で初めて成功した。
  • ピストンピンの弓なり状の変形が、コンロッドエッジにおける機械接触・焼付きの原因であることを特定した。
  • ピストンピンとコンロッド双方の弾性変形ならびに非定常流路変化を伴う薄膜キャビテーション注1潤滑を考慮した、3次元混相流体-構造体連成解析手法注2の開発に成功した。
実用化イメージ

本研究手法は自動車用エンジンのみならず流体潤滑を用いた全ての摺動部品要素に適用可能であり、輸送機械・産業機械の損傷予測や構成要素の安全性指針策定に貢献します,構成要素の最適設計が可能になります.

研究者

流体科学研究所 附属統合流動科学国際研究教育センター 混相流動エネルギー研究分野

石本 淳  

Jun Ishimoto

量子アニーリング

全てを最適化する Optimal Society

前の画像
次の画像
特徴・独自性
  • 量子アニーリングと呼ばれる最適化技術を世界でいち早く産業化に向けて、その限界を突破する基礎技術、複数の企業との応用可能性の探索に取り掛かっている。
  • その手法の優位性は、一度最適化したい目標を描くコスト関数を定式化するだけで利用できる点だが、我々はさらに最適化しやすい形、学習による逐次最適化、ブラックボックス最適化など、手法にとどまらない展開をしている。
  • 特に自動運転、工場内の物流、災害時の避難誘導へ応用展開中である。
実用化イメージ

各種車両の自動運転、災害時の避難経路誘導などの経路探索問題、工程スケジューリングや多大な組合せ問題への応用。
各業界における組合せ最適化問題への課題解決方法を提供可能。
( 交通・流通、製造、材料、創薬等)

研究者

大学院情報科学研究科 情報基礎科学専攻 情報応用数理学講座(数理情報学分野)

大関 真之  

Masayuki Ohzeki

量子暗号

量子もつれ光源の研究開発

前の画像
次の画像
特徴・独自性
  • 量子コンピュータ、量子暗号などに代表される量子情報通信技術は、現在の古典的情報処理や情報通信技術の限界を打ち破る全く新しい情報通信技術を切り拓くものとして注目を集めています。量子もつれは、そのような量子情報通信技術に不可欠な重要なリソースです。なかでも、高い効率で量子もつれ光子を発生し得る高性能な量子もつれ光源の開発は、将来の量子情報通信の中核的デバイスとして期待されています。
実用化イメージ

半導体や擬似位相整合光学非線形素子を用いた新しい量子もつれ光源の研究を進めており、多くの特許を取得しています。この技術を実用化するための企業や団体との共同研究を希望します。

研究者

電気通信研究所 情報通信基盤研究部門 量子光情報工学研究室

枝松 圭一  

Keiichi Edamatsu

量子エレクトロニクス

固体ナノ構造を用いた量子デバイスの研究

特徴・独自性
  • 固体ナノ構造中で生じる量子状態を利用して、量子センサや量子ビット等の量子デバイスの研究を進めています。
実用化イメージ

単一電子スピン状態等の量子状態の電気的精密・高速測定、制御、データ科学手法などが得意です。これらがお役に立てることがございましたら、ぜひお知らせ下さい。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

大塚 朋廣  

Tomohiro Otsuka

量子計算

全てを最適化する Optimal Society

前の画像
次の画像
特徴・独自性
  • 量子アニーリングと呼ばれる最適化技術を世界でいち早く産業化に向けて、その限界を突破する基礎技術、複数の企業との応用可能性の探索に取り掛かっている。
  • その手法の優位性は、一度最適化したい目標を描くコスト関数を定式化するだけで利用できる点だが、我々はさらに最適化しやすい形、学習による逐次最適化、ブラックボックス最適化など、手法にとどまらない展開をしている。
  • 特に自動運転、工場内の物流、災害時の避難誘導へ応用展開中である。
実用化イメージ

各種車両の自動運転、災害時の避難経路誘導などの経路探索問題、工程スケジューリングや多大な組合せ問題への応用。
各業界における組合せ最適化問題への課題解決方法を提供可能。
( 交通・流通、製造、材料、創薬等)

研究者

大学院情報科学研究科 情報基礎科学専攻 情報応用数理学講座(数理情報学分野)

大関 真之  

Masayuki Ohzeki

量子構造

半導体量子構造の伝導特性制御と超高感度NMR

前の画像
次の画像
特徴・独自性
  • GaAs やInSbの量子構造の伝導特性を制御し、核スピンの偏極状態を操作することで、二次元構造やナノ構造に適用できる超高感度NMR技術を確立した。さらに、InSb 量子構造においてアルミナ絶縁膜を用い、理想的なゲート操作を実現した。また、核スピンが感じる雑音特性を周波数依存性も含め測定する一般化された横緩和時間の考え方を提案、実証した。この概念は核スピンを用いるすべての計測に大きな変化をもたらすことが期待される。
実用化イメージ

良好なゲート制御を用いた次世代InSbデバイス。一般化された横緩和時間を利用した様々な核スピン計測、核磁気共鳴。高感度NMR は物性研究への応用が中心であるが、量子情報処理への貢献も見込まれる。

研究者

高等研究機構先端スピントロニクス研究開発センター スピントロニクス基礎研究グループ

平山 祥郎  

Yoshiro Hirayama

量子コンピューティング

固体ナノ構造を用いた量子デバイスの研究

特徴・独自性
  • 固体ナノ構造中で生じる量子状態を利用して、量子センサや量子ビット等の量子デバイスの研究を進めています。
実用化イメージ

単一電子スピン状態等の量子状態の電気的精密・高速測定、制御、データ科学手法などが得意です。これらがお役に立てることがございましたら、ぜひお知らせ下さい。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

大塚 朋廣  

Tomohiro Otsuka

量子情報

量子もつれ光源の研究開発

前の画像
次の画像
特徴・独自性
  • 量子コンピュータ、量子暗号などに代表される量子情報通信技術は、現在の古典的情報処理や情報通信技術の限界を打ち破る全く新しい情報通信技術を切り拓くものとして注目を集めています。量子もつれは、そのような量子情報通信技術に不可欠な重要なリソースです。なかでも、高い効率で量子もつれ光子を発生し得る高性能な量子もつれ光源の開発は、将来の量子情報通信の中核的デバイスとして期待されています。
実用化イメージ

半導体や擬似位相整合光学非線形素子を用いた新しい量子もつれ光源の研究を進めており、多くの特許を取得しています。この技術を実用化するための企業や団体との共同研究を希望します。

研究者

電気通信研究所 情報通信基盤研究部門 量子光情報工学研究室

枝松 圭一  

Keiichi Edamatsu

量子情報処理

固体ナノ構造を用いた量子デバイスの研究

特徴・独自性
  • 固体ナノ構造中で生じる量子状態を利用して、量子センサや量子ビット等の量子デバイスの研究を進めています。
実用化イメージ

単一電子スピン状態等の量子状態の電気的精密・高速測定、制御、データ科学手法などが得意です。これらがお役に立てることがございましたら、ぜひお知らせ下さい。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

大塚 朋廣  

Tomohiro Otsuka

量子スピン系

中性子散乱による巨視的量子現象の探索と解明

前の画像
次の画像
特徴・独自性
  • 中性子散乱は他の散乱手法(X散乱や電子線散乱)に比較して、1) Li、 H 等の軽元素による散乱が大きい、2) 磁気散乱を通して物質中の電子スピンを検出可能、3) 弾性散乱(回折)に加えて室温程度の低エネルギー励起の測定が可能という特徴があります。我々は中性子散乱法を用いて、多体電子系における巨視的量子現象、なかでも量子フラストレートスピン系における巨視的非磁性基底状態や磁気揺らぎが媒介する非従来型の超伝導現象の探索とその解明を目的に研究を進めています。
実用化イメージ

上で述べたように、中性子散乱は磁気構造およびスピンダイナミクス、さらに結晶中の軽元素位置やその運動を調べるのに適した手段です。従って、このような情報が必要な材料研究には極めて有用であると考えられます。

研究者

多元物質科学研究所 無機材料研究部門 スピン量子物性研究分野

佐藤 卓  

Taku J Sato

量子センサ

固体ナノ構造を用いた量子デバイスの研究

特徴・独自性
  • 固体ナノ構造中で生じる量子状態を利用して、量子センサや量子ビット等の量子デバイスの研究を進めています。
実用化イメージ

単一電子スピン状態等の量子状態の電気的精密・高速測定、制御、データ科学手法などが得意です。これらがお役に立てることがございましたら、ぜひお知らせ下さい。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

大塚 朋廣  

Tomohiro Otsuka