Sorted by Keyword - 1938 word(s), 265 profile(s)

 B

[Biometrics Authentication]

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
特徴・独自性
  • Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.
実用化イメージ

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Researchers

Administrative Staff

Takafumi Aoki

[biomineralization]

Peptide and Protein Designs for Unexplored Fileds

NEXT
PREV
特徴・独自性
  • I am proposing methodologies to design recombinant peptides and proteins with appropriate structures and functions in the medicinal, environmental, material, and nanotechnological fields, with molecular evolutional and domain shuffling engineering. At present, we have constructed the methodologies for efficient renaturation of functional proteins from inclusion bodies expressed in bacteria, generation of peptides and proteins with the function of biomineralization, generation of peptides and proteins with affinity for inorganic materials to spontaneously make linkages between various nanomaterials, and high enhancement of cellulolytic enzyme activity induced by nanoclustering design on nanomaterials.
実用化イメージ

We hope the business partners in the in the medicinal, environmental, material, and nanotechnological fields would be interested in my approaches and we could conduct effective collaboration research with them.

Researchers

Graduate School of Engineering

Mitsuo Umetsu

[biorefinery]

Peptide and Protein Designs for Unexplored Fileds

NEXT
PREV
特徴・独自性
  • I am proposing methodologies to design recombinant peptides and proteins with appropriate structures and functions in the medicinal, environmental, material, and nanotechnological fields, with molecular evolutional and domain shuffling engineering. At present, we have constructed the methodologies for efficient renaturation of functional proteins from inclusion bodies expressed in bacteria, generation of peptides and proteins with the function of biomineralization, generation of peptides and proteins with affinity for inorganic materials to spontaneously make linkages between various nanomaterials, and high enhancement of cellulolytic enzyme activity induced by nanoclustering design on nanomaterials.
実用化イメージ

We hope the business partners in the in the medicinal, environmental, material, and nanotechnological fields would be interested in my approaches and we could conduct effective collaboration research with them.

Researchers

Graduate School of Engineering

Mitsuo Umetsu

[Biosensor]

Bio-Hybrid MEMS for Medical, Environmental and Food Engineering

NEXT
PREV
特徴・独自性
  • We have developed original manufacturing techniques for bio-hybrid MEMSs that utilize special functions of bio-elements, proteins and living cells, for molecular selective sensing and power generation from natural fuels.
  • (1) Conducting polymer electrodes printed on hydrogels (image 1)
  • (2) Dynamic control of bio-adhesion by electrochemical means (image 2)
  • (3) Micro Biofuel Cells with flexible enzyme electrode patches (image 3)
実用化イメージ

We hope to conduct collaborative research with a willing company for a practical application of these technologies in industry.

Researchers

Graduate School of Engineering

Matsuhiko Nishizawa

Bio-inspired engineering for energy and biological applications

NEXT
PREV
特徴・独自性
  • Our goal is "bio-inspired engineering" to create new functions that exhibit functions beyond the nature systems by learning from their superior functions and incorporating them into creating materials and devices. For example, the development of surface treatment and adhesives learned from mussels, the development of anti-biofouling substrates learned from pitcher plants, the design of non-platinum catalysts for highly active fuel cells (hydrogen, enzymes, microbes, etc.) learned from hemoglobin, and needle-type biosensors learned from biological needles.
実用化イメージ

Based on electrochemistry and polymer chemistry, I provide technologies and expertise in the energy, biotechnology, and electrical and electronic fields, including metal-air batteries, fuel cells, surface treatment, adhesion, biosensors, etc.

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Hiroya Abe

[Biosignal processing LSI]

Development of Biomedical Micro/Nano Integrated System Using LSI Technology

NEXT
PREV
特徴・独自性
  • Semiconductor neural engineering is a discipline that uses semiconductor process/device/circuit technologies to further understand properties of neural systems and to create novel fusion systems of living body and machine.
実用化イメージ

One of the goals in this laboratory is to establish semiconductor neural engineering and develop biomedical micro/nano integrated systems.
Another goal is to educate the next generation of leaders in biomedical engineering through research including:
1. Intelligent Si neural probe and biomedical signal processing LSI
2. Fully-implantable retinal prosthesis system
3. Bio/nano technology and novel Bio-FET sensor
4. 3-dimensional integration technology and analog/digital LSI design

Researchers

Graduate School of Biomedical Engineering

Tetsu Tanaka

[biosurfactant]

Monomer-Recycle System of Biodegradable Plastics by Industrial Fungal Fermentation and Application of Fungal Biosurfactant Proteins to Nanoparticles for Medical Use

NEXT
PREV
特徴・独自性
  • In Japan, solid-phase fungal fermentation systems using the industrial fungus Aspergillus oryzae have been extensively used for producing fermented foods such as soy sauce and sake; the annual production volume of the products is over one million tons. The efficient enzymatic hydrolyzing systems are expected to be applicable to biological recycling of biodegradable plastics. We found that A. oryzae can effectively degrade polybutylene succinate-coadipate (PBSA) by the combination with an esterase (cutinase) CutL1 and novel surfactant proteins, RolA and HsbA that are attached to the surface of PBSA and then recruit CutL1. The recruitment of Cutl1 by the surfactants stimulated PBSA degradation.
実用化イメージ

The fungal biosurfactant protein is applicable to industrial recycling of biodegradable plastics and to production of immune-response free nano-particles for medical use.

Researchers

Graduate School of Agricultural Science

Keietsu Abe

[Bitcoin 2.0]

Blockchain-based Approachs for High Secure P2P-type Decentralized Cloud Storage and Practical Smart Contract for Trading Personal Data

NEXT
PREV
特徴・独自性
  • We are developing a decentralized P2P (Peer to Peer) type cloud storage that realizes innovative level of security by use of surplus storages of P2P nodes with the Blockchain technology. The developed storage can avoid the risk of large-scale information leakage of stored data due to the weakness of the central server. By using our cryptographic currency for rewards and usage fees in the storage, fair storage usage of all users can also be achieved.
  • In addition, We are developing a unique smart contract technology for practical decentralized trading of personal data among an unspecified number of users.
実用化イメージ

We hope to conduct collaborative researches with companies developing Bitcoin 2.0 type application (e.g. smart contract, Fintech) based on the Blockchain technology, the Internet of Things (IoT) technology, Medical Database for practical use.

Researchers

Center for Data-driven Science and Artificial Intelligence

Masao Sakai

[blended learning]

Applying Blended Learning to Special Needs Education

NEXT
PREV
特徴・独自性
  • I am interested in the human communication process and the man-machine interaction in some educational situation. I conducted interviews, questionnaires, behavior observations and experiments of students with special educational needs, their parents and teachers to investigate the needs, accessibility, usability, efficacy and its factors of blended learning and digital learning materials.
実用化イメージ

The outcomes of our research will make contribution to the design and development of teaching/learning materials and methods.

Researchers

Graduate School of Education

Masayuki Kumai

[Blockchain]

Blockchain-based Approachs for High Secure P2P-type Decentralized Cloud Storage and Practical Smart Contract for Trading Personal Data

NEXT
PREV
特徴・独自性
  • We are developing a decentralized P2P (Peer to Peer) type cloud storage that realizes innovative level of security by use of surplus storages of P2P nodes with the Blockchain technology. The developed storage can avoid the risk of large-scale information leakage of stored data due to the weakness of the central server. By using our cryptographic currency for rewards and usage fees in the storage, fair storage usage of all users can also be achieved.
  • In addition, We are developing a unique smart contract technology for practical decentralized trading of personal data among an unspecified number of users.
実用化イメージ

We hope to conduct collaborative researches with companies developing Bitcoin 2.0 type application (e.g. smart contract, Fintech) based on the Blockchain technology, the Internet of Things (IoT) technology, Medical Database for practical use.

Researchers

Center for Data-driven Science and Artificial Intelligence

Masao Sakai

[blood flow]

Biomodel for Development of Endovascular Treatment

NEXT
PREV
特徴・独自性
  • We perform in-vitro or computational researches for development of medical devices. We develop a model of artery or bone to evaluate medical devices. And we apply optimization way for development of medical devices. Our main target is, currently, stent, or catheter.
実用化イメージ

Our collaboration company can be; medical equipment, device, medical image, MEMS, standardization, medical training, or polymer.

Researchers

Institute of Fluid Science

Makoto Ohta

[blue light]

Lethal effects of blue light on insects

NEXT
PREV
特徴・独自性
  • We revealed the strong lethal effect of short-wavelength visible light (blue light: 400–500 nm) on insects. That is, we found that blue light irradiation by using a common light-emitting diode (LED) can kill the eggs, larvae, pupae, and adults of various orders of insects. Our findings will provide clean and safe pest-control technique as well as important information on the hazards of exposure to visible light.
実用化イメージ

Researchers

Graduate School of Agricultural Science

Masatoshi Hori

[bonding]

Room temperature bonding using thin metal films (Atomic Diffusion Bonding)

NEXT
PREV
特徴・独自性
  • Atomic diffusion bonding of two flat wafers with thin metal films is a promising process to achieve wafer bonding at room temperature. High surface energies of metal films and a large atomic diffusion coefficient at the grain boundaries and film surfaces enable bonding at room temperature without unusually high loading pressure. This technique, which enables bonding of any mirror-polished wafer, is gaining wider use for fabricating optical and electrical devices. Moreover, bonding of mirror polished metals and polymer sheets can be achieved, which further extends the application of this bonding technique.
実用化イメージ

Optical, power and electrical devices, MEMS, bonding of polymer sheets, metals, and ceramics for precision mechanical equipments.

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Takehito Shimatsu

[Bone]

Skeletal Regulation of Energy Metabolism

特徴・独自性
  • This project studies the influence of bone on energy metabolism in the body through health and disease.
実用化イメージ

This project may come up with new tools for metabolic syndrome prediction, therapy and diagnosis .

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Aseel Mahmoud Suleiman Marahleh

[bone regeneration]

DIFFERENTIATION INDUCING METHOD ENABLING TUMORIGENESIS OF IPS CELLS TO BE SUPPRESSED

特徴・独自性
  • The present invention relates to a technique for differentiating iPS cells into target differentiated cells while suppressing tumorigenesis in the iPS cells. In use of a statin and a differentiation inducer, iPS cells are differentiated into target differentiated cells, whereby iPS cells can be differentiated into differentiated cells in which tumorigenesis is suppressed.
実用化イメージ

Researchers

Graduate School of Dentistry

Hiroshi Egusa

[Borehole]

Development of the method of Baby Borehole Hydraulic Fracturing, BABHY

特徴・独自性
  • For the effective measurement of the reopening pressure in hydraulic fracturing, it is necessary to use the testing equipment with sufficiently small compliance. This limitation makes it difficult to apply the hydraulic fracturing for the measurement of the maximum stress, because the compliance of conventional equipments is generally so large. Taking account of this situation, we proposed a new concept which allows us to do the in-situ tests of hydraulic fracturing for stress measurement at so deep depths as more than 1 km. We call the concept the Baby Borehole Hydrofracturing, BABHY for short. In order to put the new concept into practice, we developed the BABHY sonde and finally we succeeded to carry out hydraulic fracturing test by using the tools in a vertical borehole of 811 m depth. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Fluid Science

Takatoshi Ito

[Boundary lubrication]

newDevelopment of a Numerical Prediction System for Sliding Part Wear and Seizure Occurrence Portions

NEXT
PREV
概要

Focusing on the lubricant film flow with phase change between the engine piston pin and connecting rod small end, we developed a new multiphase fluid-structure coupled analysis method that takes into account elastic deformation of the structure and flow path changes and developed a simulation prediction method for tribological properties under high load conditions. The simulation prediction method for tribological properties under high load conditions has been created. As a result, we succeeded in simulation prediction of the wear/seizure generating areas in sliding parts. We discovered that the peculiar deformation behavior of the components is the cause of wear/seizure.

従来技術との比較

It has been thought that computational prediction is impossible to verify the wear and seizure locations in fluid lubrication. Still, this study succeeded in the simulation prediction of wear and seizure locations in sliding parts.

特徴・独自性
  • Numerical prediction of the wear and seizure locations in the sliding parts of engine piston pins was successfully performed.
  • The bow-like deformation of the piston pin was identified as the cause of mechanical contact and seizure at the connecting rod edge.
  • A three-dimensional multiphase fluid-structure coupled analysis method has been successfully developed, considering the piston pin's elastic deformation and connecting rod and thin-film cavitation1 lubrication with unsteady flow path changes.
実用化イメージ

This research method applies to automotive engines and all sliding component elements using fluid lubrication. It contributes to damage prediction and the development of safety guidelines for transportation and industrial machinery components, enabling the optimal design of components.

Researchers

Institute of Fluid Science

Jun Ishimoto

[Brain]

Brain Development and Aging Using Large Brain MRI Database

NEXT
PREV
特徴・独自性
  • We have revealed relationships among brain structure, brain function, lifestyle, genetic factor, and cognitive function using brain magnetic resonance imaging (MRI) database. The goal of our project is to prevent several diseases and disorders such as dementia by performing personalized medicine using the large brain MRI database.
実用化イメージ

Our research is related with several industrial fields such as food, sleep, and other lifestyle industries. In addition, our research is also related with medical field such as preventing medicine and brain check-up.

Researchers

Smart-Aging Research Center

Yasuyuki Taki

Brain Mechanism Realizing Human Mind

NEXT
PREV
特徴・独自性
  • I am investigating the brain mechanism of human mind. Specifically, my target is the internal schema that dissociate the self and other in the following three layers: physical, interpersonal, and social domains.
実用化イメージ

  • Improvement of the interface of the system
  • Clarifying the neuro-cognitive mechanism of the effect on the customer
  • New concept of the customer satisfaction

Researchers

Institute of Development, Aging and Cancer

Motoaki Sugiura

[Brain Computing]

Hardware Development of Brain Computer and its Application to Visual Information Processing

NEXT
PREV
特徴・独自性
  • Toward realizing a high-performance neuromorphic vision processing system, our research involves a neural network model of spatial perception based on motion-stereo vision and its implementation on a very large scale integrated circuit (VLSI). Important parameters for spatial perception such as time-to-contact, orientation, and the shortest distance to plane surfaces of a target object are recognized by using the model without knowing moving direction and velocity of the object. We have developed a VLSI capable of performing visual perception based on the model with low power consumption, reduced less than 1/100 compared with a commercial CPU.
実用化イメージ

Targeted applications include a drone flying autonomously equipped with collision avoidance system by visual perception. Targeted industry includes infrastructure inspection, agriculture, logistics, and so on.

Researchers

Research Institute of Electrical Communication

Shigeo Sato