登録されているキーワード 2927ワード(研究テーマ407件)

パルスレーザー

スピントロニクス材料と情報通信技術への応用

前の画像
次の画像
特徴・独自性
  • 1. マンガン系磁性材料を主とする新薄膜磁性材料の研究開発(図1)
  • 2. フェムト秒パルスレーザーに対する磁性体の超高速応答の基礎研究(図2)
実用化イメージ

次のような、電子・通信産業と産学連携の可能性があります。
○ 新材料を用いたトンネル磁気抵抗素子の、大容量磁気メモリ、磁気ストレージ、ミリ波〜テラヘルツ波通信素子への応用。
○ フェムト秒パルス光を用いたテラヘルツ波輻射への応用。
○ パルス光を用いた磁気スピン波の制御と論理デバイスへの応用。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

水上 成美  

Shigemi Mizukami

ハロゲン化物単結晶

新規機能性結晶、シンチレータ、圧電単結晶の開発とデバイス化

前の画像
次の画像
特徴・独自性
  • 放射線や光、熱、圧力等の外部からのエネルギーと結晶との相互作用に興味を持ち、㈰化学と物理の両面からの材料設計、㈪合成プロセスの開発、㈫相互作用の評価と理解、の3 つの切り口から先駆的な機能性結晶の研究を進めています。研究室内で異分野融合を行っており、要素技術の上流から下流までを垂直統合する体制で取り組んでいます。優れた特性を持つ結晶に関しては、そのデバイス化、実機搭載にも主体的に関わる点も特徴です。
実用化イメージ

シンチレータは、核医学、セキュリティ、核融合、資源探査、宇宙物理等、に用いる放射線検出器に応用されます。高発光量、高速応答、長波長発光、高エネルギー分解能、高温域での安定性など、ユーザーのニーズに合わせた材料設計が可能です。また、ランガサイト型圧電結晶は室温近傍の温度特性と低インピーダンスである特性を利用して、振動子、発振器、音叉等への応用も考えられております。また、高温域での特性に注目し、特に、自動車の燃焼圧センサー等への応用も検討されております。

研究者

金属材料研究所 材料設計研究部 先端結晶工学研究部門

吉川 彰  

Akira Yoshikawa

パワーデバイス

AIチップが切り拓く賢い省エネと安全の輸送技術

前の画像
次の画像
特徴・独自性
  • 遠藤研究室では、これまで提案し研究してきた㈰高効率のパワーデバイス&パワー制御回路技術、㈪スピン素子を融合した極限省エネな知的集積回路&パワーマネジメント技術、㈫3次元構造デバイスによる極限集積システムのための新規材料プロセス技術(プラットフォーム構築)をコア技術として、パワーエレクトロニクスと知的ナノエレクトロニクスの融合技術へと発展・展開させ、更なる高性能化と省エネ化の両立という社会的要請に応える新しいグリーンパワーエレクトロニクス領域を創出することを目指しシステムアーキテクチャ、回路、デバイス、CADまでの研究・開発を、一貫して行っています。
実用化イメージ

省エネデバイスとパワーデバイスおよびその集積回路技術をコアとして、革新的な高効率エネルギー変換、高度パワーマネジメントの創出を目指し研究開発を行っています。本研究に興味のある企業や団体との共同研究を希望します。

研究者

大学院工学研究科 電気エネルギーシステム専攻 エネルギーデバイス工学講座(グリーンパワーエレクトロニクス分野)

遠藤 哲郎  

Tetsuo Endoh

パワーマネジメント

AIチップが切り拓く賢い省エネと安全の輸送技術

前の画像
次の画像
特徴・独自性
  • 遠藤研究室では、これまで提案し研究してきた㈰高効率のパワーデバイス&パワー制御回路技術、㈪スピン素子を融合した極限省エネな知的集積回路&パワーマネジメント技術、㈫3次元構造デバイスによる極限集積システムのための新規材料プロセス技術(プラットフォーム構築)をコア技術として、パワーエレクトロニクスと知的ナノエレクトロニクスの融合技術へと発展・展開させ、更なる高性能化と省エネ化の両立という社会的要請に応える新しいグリーンパワーエレクトロニクス領域を創出することを目指しシステムアーキテクチャ、回路、デバイス、CADまでの研究・開発を、一貫して行っています。
実用化イメージ

省エネデバイスとパワーデバイスおよびその集積回路技術をコアとして、革新的な高効率エネルギー変換、高度パワーマネジメントの創出を目指し研究開発を行っています。本研究に興味のある企業や団体との共同研究を希望します。

研究者

大学院工学研究科 電気エネルギーシステム専攻 エネルギーデバイス工学講座(グリーンパワーエレクトロニクス分野)

遠藤 哲郎  

Tetsuo Endoh

犯罪予防

犯罪予防の促進要因の検討

前の画像
次の画像
特徴・独自性
  • 犯罪者は誰を狙い、どこで犯行に及ぶのでしょうか。また、犯罪の被害に遭わないようにするためには、我々はどのようなことを心掛け、どのような場所を避けると良いのでしょうか。あるいは、環境を整えることで犯罪を防ぐことは可能なのでしょうか。こうした点を心理学的な手法を用いて研究し、犯罪からの安全や安心を目指すための方策を考えています。
実用化イメージ

犯罪からの安全や安心だけではなく、社会全般の安全・安心を提供するような様々な業界との産学連携を想定しています。

研究者

大学院文学研究科 総合人間学専攻 心理言語人間学講座(心理学専攻分野)

荒井 崇史  

Takashi Arai

反射型ディスプレイ

次世代高臨場・低電力ディスプレイシステムの研究開発

前の画像
次の画像
特徴・独自性
  • 近年、高精細映像通信サービスやユビキタスネットワークの普及による情報の多様化に伴い、情報ネットワークと人との間を繋ぐヒューマンインターフェースとしてディスプレイは大容量化や高色再現といった表示の高品位化だけではなく、省電力化や高臨場感等の高機能化の実現が期待されている。当研究室では、液晶を用いた光の偏光および拡散の精密な解析・制御技術、ならびにそれに基づいた高性能ディスプレイシステムについて研究を行っており、これにより電子ブックやデジタルサイネージ等をはじめとした新しいメディアの創出、省エネルギー社会の実現に貢献することを目的としています。特に偏光の精密な解析と制御を可能とする偏光制御理論を確立すると共に、その応用として液晶分子の表面配向状態の解析および制御技術、液晶の広視野角・高速化技術、フィールドシーケンシャルカラー(色順次表示)方式を用いた超高精細ディスプレイ技術、超低消費電力反射型フルカラーディスプレイ、超大型・高品位ディスプレイなどについて研究を進めています。
  • また、インタラクティブ(双方向対話型)なコミュニケーション技術に基づいた情報社会の構築を想定した次世代高臨場感ディスプレイ技術についても研究を行っています。具体的には精密な光線方向制御に基づいた実空間裸眼立体ディスプレイおよび多視点ディスプレイに関する研究などがあります。以上のような技術をさらに進展させ、産業界で活用したい企業や団体との共同研究を希望します。
実用化イメージ

研究者

大学院工学研究科 技術社会システム専攻 バリュープロポジション講座(情報感性工学分野)

石鍋 隆宏  

Takahiro Ishinabe

反射率

X線イメージングと構造解析の融合

前の画像
次の画像
特徴・独自性
  • X 線用の回折格子を用いた新しいイメージング法( 小角X線散乱コントラストイメージング法)により、画像検出器の空間分解能を1000 ? 10000 倍上回るnm オーダーの構造情報を非破壊で定量的に取得することに成功しています。軟組織の診断を含む医療診断や、ソフトマテリアルを含む材料の研究・開発、農作物、食品などの研究・開発、光学素子の精密評価など、様々な応用展開を期待しています。
実用化イメージ

医療診断機器の開発、有機・無機材料の研究・開発、農林水産業、食品加工業など、様々な応用分野との産学連携の可能性を期待しています。

研究者

国際放射光イノベーション・スマート研究センター 横幹研究部門 次世代検出法スマートラボ

矢代 航  

Wataru Yashiro

半導体

試作コインランドリ −MEMSを中心とする半導体試作共用設備−

前の画像
次の画像
前の動画
次の動画
概要

4 インチ、6インチ、一部8インチのMEMSを中心とした半導体試作開発のための共用設備で、必要な装置を必要なときに時間単位でお使いいただけます。東北大学に蓄積された関連ノウハウが利用可能で、スタッフが試作を最大限支援します。東北大学西澤潤一記念研究センターの2 階スーパークリーンルームのうち、約1,200m2を主に利用しています。装置、料金については、ホームページをご覧ください。

従来技術との比較

経験豊富な10人以上の技術スタッフが支援します。エッチング、成膜などの各プロセスの標準的な加工条件を提供していますので、ご要望に応じた試作がすぐに開始できます。シリコン以外の様々な材料にも対応します。

特徴・独自性
  • MEMS、光学素子、高周波部品などのデバイスのほか、半導体材料開発などに対応します。
  • 試作前、試作途中における、デバイスやプロセスの技術相談にも対応しています。
  • デバイスの実装工程に対応する「プロトタイプラボ」も利用できます。
  • 半導体、計測器、センサなどの歴史を学んでいただける博物館もご覧いただけます。
  • 東北大学半導体テクノロジー共創体の一部として、半導体の研究開発、人材育成を推進しています。
  • 学生、企業技術者向けの半導体人材育成プログラムをオンデマンドで実施しています。
  • 文部科学省マテリアル先端リサーチインフラ(ARIM)事業のメンバーとして、設備とデータの共用に取り組んでいます。
実用化イメージ

2010年の開始以降310社以上の企業が利用しています。MEMS等のデバイスメーカーはもちろん、材料や機械部品、装置メーカーからも利用があります。これまでに約10件の実用化支援事例があります。

研究者

マイクロシステム融合研究開発センター

戸津 健太郎  

Kentaro Totsu

固体ナノ構造中の電子物性解明とデバイス応用

特徴・独自性
  • 微細加工によりナノメートルスケールの微細構造を作製し、その電気的性質の解明とデバイス応用の研究を進めています。
実用化イメージ

精密・高速電気測定(低ノイズ、単一電子検出等)、極低温・高磁場測定、微細加工、データ科学手法などが得意です。これらがお役に立てることがございましたら、ぜひお知らせ下さい。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

大塚 朋廣  

Tomohiro Otsuka

計算材料学

前の画像
次の画像
特徴・独自性
  • 私たちは、第一原理計算と情報学を用いて、従来実験では到達できなかった数の物質を探索し、有望な材料を発見することを研究テーマとしております。特に、第一原理計算の自動化やデータベースの構築、さらにはそれらを用いた特性の理解、新材料探索を得意としています。
実用化イメージ

自動計算の仕組みの導入や、どのような計算を行うかのアドバイス、計算で得られた結果の解釈を通して、実用に資する新材料の探索を共同で行います。また情報学を用いた材料研究の支援を行います。

研究者

金属材料研究所 材料プロセス・評価研究部 複合機能材料学研究部門

熊谷 悠  

Yu Kumagai

半導体材料

高い空隙率をもつ多孔質SiCを簡便に作製

概要

炭化ケイ素のフラクタル多孔体
https://www.t-technoarch.co.jp/data/anken/T21-019.pdf

従来技術との比較

SiCの多孔質化には従来微細加工などが用いられてきた。本発明はSiCフラクタル多孔体をバルクで合成する手法を提供する。

特徴・独自性
  • Mg蒸気でシリコーン樹脂を還元することで、SiC多孔体を形成
  • フラクタル構造を持つ階層的な多孔体が形成される
  • 従来の微細加工では困難だった表面等に形成が可能
実用化イメージ

耐熱性のあるファインセラミクス多孔体として利用可能。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

半導体集積回路

LSI技術を用いた医療・ヘルスケア用マイクロナノ集積システム

前の画像
次の画像
特徴・独自性
  • 半導体工学と神経工学を基盤として、生体の構造と機能の理解に基づいた医療・ヘルスケア用の新しいマイクロ・ナノ集積システムの研究開発を行っています。脳をはじめとする生体の電気的・化学的状態を多元的・立体的に計測解析するための神経プローブや生体信号処理LSI、生体と同じ積層構造を有することにより高いQOLを実現する完全埋込型人工網膜などの研究開発を推進しています。また、シリコン貫通配線(TSV)を用いたCtC/CtW/WtW 三次元集積化技術の研究開発も行っています。
実用化イメージ

これまでに国内外の企業・研究機関と三次元集積化技術や生体信号処理LSI に関する共同研究を積極的に行っています。
㈰医療現場での生体情報モニタリング機器やパーソナルヘルスケア機器に使用される集積回路や医用集積モジュールの開発
㈪シリコン貫通配線を用いた三次元集積回路の開発(3D-LSI/TSV)

研究者

大学院医工学研究科 医工学専攻 生体機械システム医工学講座(医用ナノシステム学分野)

田中 徹  

Tetsu Tanaka

半導体レーザ

システム変革を鑑みた半導体材料から素子応用に関する 研究開発

前の画像
次の画像
特徴・独自性
  • (1)光通信用半導体レーザ:1981年、通信波長1.55μmでの単一縦モードでの室温連続発振。ファイバ当たりの伝送容量を25千倍の10Tb/sに増大。(2)窒化物半導体青色LED:InGaAlN提案(1987年)、発光材料InGaN単結晶薄膜成長(1989年)。本技術は市販の青色LED作製の標準技術。高周波・高出力トランジスタ:逆HEMT作製。車用トランジスタ実現のためGaN基板開発中。
実用化イメージ

光通信用分布帰還型レーザ作製技術:サブミクロン周期構造作製、レーザの作製プロセス・素子評価・シミュレーション/窒化物半導体関連技術:有機金属気相成長、結晶評価、発光素子‧太陽電池‧電子素子の作製と評価

研究者

未来科学技術共同研究センター 開発研究部 窒化物半導体の結晶成長と光デバイス・電子デバイスの研究

松岡 隆志  

Takashi Matsuoka

ICT応用に向けた新機能半導体レーザ光源技術

前の画像
次の画像
特徴・独自性
  • 半導体レーザの高機能化を実現する新機能半導体レーザ光源技術の創出を目指し、以下の研究開発を進めています。
  • 1. 100Gbps NRZ 信号で動作可能な集積型半導体レーザの実現を目指して研究開発を進めています。
  • 2. 光フィルタを周波数弁別器とした光負帰還法を単一モード半導体レーザへ適用することで、小型な超狭線幅光源の実現を目指しています。
  • 3. 光変調器を用いた平坦な光周波数コム発生の研究を進めています。
実用化イメージ

研究開発で実現を目指す新機能半導体レーザ光源技術は、次世代光通信システムや超精密光計測システムの機能や性能を大幅に改善できる技術と考えています。

研究者

電気通信研究所 情報通信基盤研究部門 応用量子光学研究室

八坂 洋  

Hiroshi Yasaka

グローバルネットワークを支える光通信技術

特徴・独自性
  • 本研究室では、光時分割多重方式による1 チャネルあたりTbit/s級の超高速光伝送、QAM と呼ばれるデジタルコヒーレント光伝送、ならびにそれらを融合した超高速・高効率光伝送技術の研究開発を進めています。また、デジタルコヒーレント伝送のアクセスネットワークおよびモバイルフロントホールへの展開と、光通信と無線通信とを同じ電磁波として融合する新領域の開発を目指しています。
  • 産学連携が可能な分野としては、超高速光伝送、コヒーレント光通信、光増幅器、新型光ファイバ、ファイバレーザ、光ファイバ計測等の技術分野があります。現在、NICT、AIST 等の研究機関をはじめ、光ファイバ、光学材料、光部品、測定器等のメーカ、ならびに通信キャリア関係の企業と連携を行っています。最近では、Beyond 5G を目指して、光無線融合型超高速アクセスネットワークの実現に関心を持っています。
実用化イメージ

研究者

電気通信研究所 情報通信基盤研究部門 超高速光通信研究室

廣岡 俊彦  

Toshihiko Hirooka

パンヌス

重度の自己免疫性関節炎、血管炎、唾液腺炎を自然発症する疾患モデルマウス、McH-lpr/lpr-RA1マウスの開発

前の画像
次の画像
特徴・独自性
  • McH/lpr-RA1マウスは、MRL/lprとC3H/lprマウスに由来するリコンビナントコンジェニックマウスで、関節リウマチ、結節性多発動脈炎、シェーグレン症候群に類似した骨破壊や関節強直、血管炎、唾液腺炎を高頻度に発症します。一方McH/lpr-RA1は、MRL/lprにみられるような全身のリンパ節腫脹や重篤な腎炎の発症はみられませんので、繁殖・維持が容易で長期の薬剤投与実験も可能です。
実用化イメージ

膠原病の診断・治療薬の開発。免疫チェックポイント阻害剤による免疫学的有害事象の発症メカニズムの解明と発症予防薬の開発等に応用可能で、製薬会社、検査試薬会社等との産学連携が可能である。

研究者

大学院医工学研究科 医工学専攻 治療医工学講座(腫瘍医工学分野)

小玉 哲也  

Tetsuya KODAMA

反応速度

エコマテリアルプロセス

前の画像
次の画像
特徴・独自性
  • 溶融鉄合金・スラグの熱力学的性質、反応速度論、複合酸化物の相平衡など、鉄鋼を中心とした金属製造プロセスに関する物理化学的基礎研究、金属スクラップや廃棄物リサイクルの熱力学、スラグを利用した炭酸ガス固定化等、環境関連の研究を行っている。最近では、従来行ってきた素材製造プロセス工学に基礎を置く研究手法に、計量経済学、LCA、物質フロー分析などを融合させ、他に類を見ない独特の環境研究を展開している。
実用化イメージ

高炉、電炉鉄鋼メーカーとは従来より強く連携して研究を進めてきたが、スラグ等製錬副生物の高度資源化のために、非鉄メーカー、廃棄物中間処理事業者、行政とも連携していきたい。

研究者

未来科学技術共同研究センター 開発企画部

長坂 徹也  

Tetsuya Nagasaka

半導体プロセス

高精度デバイスプロセス技術と新規イメージセンサ開発

前の画像
次の画像
特徴・独自性
  • クリーンルーム・ユーティリティのレベルから、材料、装置、プロセス、デバイス、回路、実装、信号処理、計測・評価、信頼性に至るまでの研究に総合的に取り組みつつ、それらを基盤として、イメージセンサの極限性能の追及を行っています。
  • 今までに、100 万個を超えるトランジスタ性能の高精度高速計測技術(2004 年)、明暗差5 ケタの単露光撮影を可能とした広ダイナミックレンジCMOS イメージセンサ(2008 年)、毎秒1000 万コマの撮影が行える高速CMOS イメージセンサ(2012 年)などの実用化に成功しています。
実用化イメージ

デバイスメーカの量産ラインと相互乗り入れ可能な清浄度を有する200mmウェーハのシリコンデバイス流動が行えます。また、現有するクリーンルーム施設設備を利用した要素プロセス検討、高度な各種分析評価が行えます。新規イメージセンサの開発に取り組むことができます。

研究者

未来科学技術共同研究センター 開発研究部 クリーンルーム整備共用化の推進と半導体製造技術・センサ技術の開発

須川 成利  

Shigetoshi Sugawa

PFASフリー

非フッ素系PTFE粒子分散剤

概要

非フッ素系PTFE水分散剤
https://www.t-technoarch.co.jp/data/anken/T19-448.pdf

従来技術との比較

PTFE粒子を水などの溶剤に分散させるためにはフッ素系分散剤が必要であったが、PFAS規制により仕様が制限されつつある。本発明は非フッ素系PTFE粒子分散剤を提供する。

特徴・独自性
  • カテコール系接着官能基を用いてPTFEに接着する分散剤を合成
  • PTFE等の低表面エネルギー粒子を水などに良好に分散
  • PFAS規制などで使用できない分散剤の代替として有望
実用化イメージ

PTFE粒子などの低表面エネルギー粒子は撥水剤やバインダーなどとして広く使用されている。本用途におけるPFASフリー化に貢献する。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

BCP