Tohoku University. Research Profiles

LANGUAGE

Development of Sensors and Measuring Systems for Ultra-Precision Manufacturing and Nanomanufacturing

update:2018-12-20
  • JAPANESE
  • INQUIRY
  • seed-123-1-en.jpg
  • seed-123-2-en.jpg
  • seed-123-3-en.jpg
NEXT
PREV
Features
The research is being focused on measurement of surface forms of precision workpieces and stage motions of precision machines, which are important items for ultra-precision manufacturing and nanomanufacturing. Optical sensors are being developed for measurement of angle and displacement, which are fundamental quantities for manufacturing. Technologies for improvement of the sensor sensitivity and bandwidth, reduction of the sensor size as well as new multi-axis sensing methods are being The research is being focused on measurement of surface forms of precision workpieces and stage motions of precision machines. Optical sensors are being developed for measurement of angle and displacement. A number of scanning-type measuring systems for precision measurement of surface forms and stage motions are also being developed. Error separation algorithms and systems for straightness and roundness, which are the most fundamental geometries treated in ultra-precision manufacturing, are being investigated. Novel systems based on scanning probe microscopy are under development for micro- and nano-structures as well as freeform optics in responding to new and important challenges from ultra-precision manufacturing and nanomanufacturing.

Targeted Application(s)/Industry
The multi-axis optical displacement and angle sensors developed in the laboratory are expected to measure motions of semiconductor/IC manufacturing and inspection equipment, precision machine tools, ultra-precision measuring instrument. The surface profile measurement systems are expected t play an important role in ultra-precision manufacturing and nanomanufacturing industries.

Researchers

Department of Nanomechanics, Graduate School of Engineering

GAO, Wei , Professor
PhD

Keywords

List