Low temperature reforming of hydrocarbons using metal oxide nanoparticles synthesized by supercritical method


update:2020/06/16
NEXT
PREV
Features and Uniqueness
  • Our research group has succeeded in synthesizing various metal oxide nanoparticles with controlled size and exposure crystal planes by using organic modifiers under supercritical water conditions. The oxygen storage/release capacity of those materials in the low-temperature region is very high, and the reforming reaction of oxidative hydrocarbon proceeds at a significant rate. Besides, by combining the supercritical CO2 drying method, we have succeeded in forming a complex in which oxide nanoparticles are dispersed at a high concentration on the surface of the porous material, realizing both high oxygen storage/release capability and stability.
Practical Application

Low-temperature reforming reaction of biomass wastes, heavy oils, and methane. In the future, it is expected to be a technology that will lead to the construction of a low-carbon society, including CO2-free complete recycling of waste plastics.

Keywords

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri, Professor
Doctor of Engineering