• Top
  • Research Themes

Research Themes - 265 Result(s)

 C

Colorful titanium oxide pigments without transition metals

概要

Colorful TiO2 Particle
https://www.t-technoarch.co.jp/data/anken_en/T19-849.pdf

従来技術との比較

Transition metal compounds are known to exhibit a wide variety of colors. Until now, it has been possible to color white titanium oxide by doping with transition metal ions, but it is difficult to avoid biotoxicity derived from transition metals.

特徴・独自性
  • In the present invention, titanium oxide inorganic pigments that do not contain transition metals and have various colors such as white, yellow, red, gray, green, purple, black, and skin color have been realized.
実用化イメージ

New applications of titanium oxide pigments are expected in the cosmetics field, where biotoxicity is an issue.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Yin Shu

Combustion and Atomization Technology in High-Pressure Gas Turbine Conditions

NEXT
PREV
特徴・独自性
  • Combustion is a complex phenomenon composed of multi-dimensional dynamics of temperature, concentration, velocity, and chemical reactions. Advanced combustion technologies are essential for solving the environmental and energy issues. Our laboratory has a high-pressure combustion test facility which is a unique experimental facility in the world. Research projects have originality, especially in the field of high-pressure combustion and laser diagnostics, and focus on not only aerospace engineering and energy engineering including new fuel technology but also atomization technology and safety operations of chemical plants mostly operated at high pressure.
実用化イメージ

Potential collaborations are in the research fields of aerospace propulsions, automobile engines, power generations and chemical plants, in terms of development of gas turbine combustors for various fuels, generation and control of fuel atomizers, laser diagnostics of combustion and safety design of chemical reactors.

Researchers

Institute of Fluid Science

Hideaki Kobayashi

Construction of Monitoring Systems for Genetic Diversity in Aquatic Organisms

NEXT
PREV
特徴・独自性
  • Maintaining genetic diversity within a species is a major issue to conserve biodiversity and sustainable use. To monitor genetic diversity in natural and captive populations using adequate genetic markers is the most important step. We have focused aquatic organisms and studied the genetic diversity using an array of DNA analyses. Our research interest includes 1) genetic structure and phylogeography of natural populations in marine and freshwater organisms and 2) genetic management of commercially important species to contribute the stock enhancement programs.
実用化イメージ

Our skill can be applied to environmental assessment and fish resource management. We are collaborating with national institutes and giving advice to private environmental assessment companies.

Researchers

Graduate School of Agricultural Science

Minoru Ikeda

Converting Food Waste into Valuable Materials with Hot-Compressed Water Treatment

NEXT
PREV
特徴・独自性
  • Treatment with hot-compressed or subcritical water is an attractive process for converting food waste into valuable materials. Water is an environmentally acceptable solvent and is cost effective; thus, hot-compressed water has recently received attention as a medium for resource recovery from waste. We chose fish gelatin as a model of marine food waste (especially fish skin fraction), and we determined the optimum conditions for the degradation of fish gelatin with hot-compressed water between 160 and 240 °C at 2 MPa. These conditions were optimized in terms of maximizing the concentrations of specific degradation products, such as peptides, and ACE inhibitory.
実用化イメージ

The disposal of fish waste has become a serious problem in marine food industries because approximately half of the fish mass, including the skin, bones, entrails, and some meat. The feasibility of converting organic waste by hot-compressed water (subcritical water treatment) into useful resources has been demonstrated together with Industry.

Researchers

Graduate School of Agricultural Science

Tomoyuki Fujii

Creation of a high functional bio-interface using laser fabrication

NEXT
PREV
特徴・独自性
  •  Using laser fabrication, we are developing techniques to enhance material surface properties and functionality. For example, to create a functional interface, we aim to clarify, by way of simulation and experimentation, the phenomenon that occurs when the surface of a material is irradiated using a laser beam.
  •  We expect that the results of our research will be widely applicable, including biomedical devices.
  • ■ Creation of biocompatible surfaces
  •  Materials used for artificial organs, vessels, and other bio-implants require excellent tissue and cell biocompatibility. Therefore, we are exploring the creation of biocompatible surfaces using a new laser irradiation process in this study.
  •  We have succeeded in imparting a biologically active function to titanium-based materials by applying the laser irradiation technique. When such a material that has a biologically active function is inserted in a living body, hydroxyapatite (the principal constituent of bones and teeth) precipitates on the surface. Using the laser irradiation technique, we can manufacture bone-adherent implants, and we envisage their application to artificial joints or dental implants.
  •  This research aims to discover such breakthrough solutions for biomedical applications using the laser irradiation technique.
実用化イメージ

Researchers

Green Goals Initiative

Masayoshi Mizutani

Creation of cancer cell specific oligonucleotide therapeutics

NEXT
PREV
特徴・独自性
  • Focusing our reseach interest mostly on the recognition and complexation behavior control of bioplymrs, such as DNA/RNA, proteines and so on. Another topics are reaction control based on molecular recognition phenomena in both ground and electronically excited states, we are pursuing mechanistic and synthetic studies on asymmetric photochemistry with supramolecular biopolymers as chiral reaction fields.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Takehiko Wada

Creation of Organic-Inorganic Hybrid Materials and their Application

NEXT
PREV
特徴・独自性
  • Organicl compounds, such as liquid-crsytals, polymers, etc., can be hybridized with inorganic materials in atomic level, in particuar, with nanoparticles. Both of high effeciency of processing ease for the former and high possibilities of physical properties for the latter can be attained through the complete solution of trade-off characteristics. For example, this atomic-level hybridization technique makes inorganic nanoparticles active for the response like a liquid crystal. By using this method, we expect we can conduct effective collaborative research in medical fields.
実用化イメージ

Researchers

International Center for Synchrotron Radiation Innovation Smart

Atsushi Muramatsu

Cyber Physical Systems Security and Its Applications

NEXT
PREV
特徴・独自性
  • Our study focuses on information security technologies for the next-generation ICT society fusing real-world and cyber-space computing. We are now conducting the research and development of ultra-high-speed, ultra-low power LSI computing to perform security functions such as encryption and secure computing, secure implementation technologies to protect systems from various physical attacks (attacks carried out by physical access to the system), and security optimization technologies tailored to the system usage environment and application area.
実用化イメージ

We can provide collaboration and information exchange services in the fields of information security. In particular, we have experiences of domestic/international collaborative researches on embedded security with some companies, universities, and governmental institutes.

Researchers

Research Institute of Electrical Communication

Naofumi Homma

 D

Data Analytics for Creation of Social Values

NEXT
PREV
特徴・独自性
  • My research field is a data analytics for creation of social values by data science approaches. In modern society, we can observe various data sets about our daily life, business or community. I aim to create new services for it using such data set and methods of Bayesian modeling, data mining or machine learning.
実用化イメージ

Researchers

Graduate School of Economics and Management

Tsukasa Ishigaki

Design and control of new weld interface during welding of dissimilar materials

NEXT
PREV
特徴・独自性
  • Welding of dissimilar materials is an important process to manufacture the future structures and devices, but it is hard to produce the high-performance welds because the excessive reaction at the weld interface deteriorates the weld properties. Our group attempts to develop the new dissimilar welding process to yield the new interface with the aimed properties through design and control of interfacial reaction as well as usage of solid-state welding processes, such as friction stir welding and ultrasonic welding.
実用化イメージ

We hope to have collaborative researches with willing companies for practical application of welding of dissimilar materials, including metal/metal and metal/thermoplastic composite, in transportation, infrastructure, and energy industries.

Researchers

Graduate School of Engineering

Yutaka Sato

Design and Development of 50 kg-class Micro Satellites

NEXT
PREV
特徴・独自性
  • We design and develop micro satellites in a format of 50 cm cubic size and 50 kg mass. We have developed the first and second micro satellites of Tohoku University, named “RISING” and “RISING-2”, launched by using JAXA’s H-IIA rocket vehicle in January 2009 and May 2014, respectively. Both satellites are operated from our ground station in the university. Particularly, RISING-2 has succeeded in capturing high precision color images of the Earth's surface at a spatial resolution of 5m, the highest in the world among 50kg-class satellites. Now the third micro satellite for international science mission is under the development. In addition, we are active in nano satellite development. The first nano-sat “RAIKO” in a 10 by 10 by 20 cm format was launched from the International Space Station in 2012. More nano-sats are under the development.
実用化イメージ

We would like to make innovation in space business by introducing a new paradigm for rapid and low cost development of space systems for various missions of remote sensing, earth observation, and space exploration. We have rich experience in the development of spacecraft bus systems, onboard avionics systems and mission instruments. Collaborations with technology and business partners are welcome.

Researchers

Graduate School of Engineering

Kazuya Yoshida

Design and Fabrication of Micro-Optical Devices Based on Optics, Especially Optical MEMS and Sensors

NEXT
PREV
特徴・独自性
  • On the basis of optical engineering, optical technologies for sensing mechanical motion, spectroscopic properties, and other physical/chemical characteristics are investigated. Moreover, using semiconductor micro/nano-fabrication technology, integrated micro-optical sensors, micro/nano optical systems, optical micro-electro-mechanical systems (MEMS) are studied. Micro laser scanner for display, deformable mirror for telescope, optical displacement encoder, and fluorescent analysis system are the examples of research topics.
実用化イメージ

Optical design, Optical industries, Industries relating to semiconductor micro fabrication and MEMS, optical telecommunications, etc.

Researchers

New Industry Creation Hatchery Center

Kazuhiro Hane

Design, fabrication and test of high performance miniaturized sensor and actuator systems

NEXT
PREV
特徴・独自性
  • Micro and nano electro-mechanical systems (MEMS/NEMS) have completely changed human society in the past decades. Many devices that are taken for granted these days like smart phone, future car and drone would be unthinkable without them.
  • The integration of various new kinds of materials, such as metallic glass and nanostructures into micro technologies allows us to create devices with novel performance and characteristics; examples include acoustic sensors and actuators, thermoelectric generators and wafer level packages.
  • In collaboration with partners inside and outside Tohoku University, technologies are being developed that can be transferred to industry ranging from material integration and processes to packaging and reliability.
実用化イメージ

Wide collaboration in Microsystem technology is possible. We develop, implement and optimize processes, devices and systems until they are ready for use, keeping in mind reliability, yield and other important features for commercialization. We work with also with partners, such as Fraunhofer. Flexible interlinking of expertise and capacities with other research groups enables us to meet broad project requirements and create complex system solutions.

Researchers

Micro System Integration Center

Froemel Joerg Eckhardt

Developing energy creation and saving materials

NEXT
PREV
特徴・独自性
  • Most innovations have been triggered by advent of new materials. We focus on to explore new inorganic materials and their synthesis routes on the basis of our knowledge about the material design and various materials processing technologies. We develop proton conducting phosphate glasses working at intermediate temperatures and narrow gap oxide semiconductors applicable in visible and NIR regions. Thin-film solar cells, fuel cells using those materials are also developing.
実用化イメージ

We focus on oxide semiconductors and proton conducting electrolytes and electrodes in order to apply them in solar cells, fuel cells, light-emitting devices. But, applicable area of our technologies is not limited in those applications.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Takahisa Omata

Development and evaluation of various inhibitors and disinfectants for SARS-CoV-2

NEXT
PREV
特徴・独自性
  • Using the infectious SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), we are evaluating and developing new therapeutic drug candidates as well as evaluating disinfectants. Further analyses such as mechanism of action and resistance may be applicable. Other pathogens, including influenza virus and drug-resistant bacteria, will be examined upon request and discussion. Through joint and collaborative research with domestic and overseas pharmaceutical companies and related companies, we have experience of their clinical application including basic research.
実用化イメージ

We support development and evaluation of various inhibitors and disinfectants for variants of SARS-CoV-2 as well as wild type.

Researchers

International Research Institute of Disaster Science

Eiichi Kodama

Development of a Novel Quantification Method for Diarrhetic Schell Fish Poisoning

特徴・独自性
  • We have investigated isolation and structure determination of natural products and evaluated mode of their actions. We have especially focused on marine natural products causative for a food poisoning, diarrheic shellfish poisoning (DSP), which has spread worldwide and threatened regional fishery industry. Dinophysistoxin produced by the dinoflagellate Dinophysis spp. and okadaic acid, are thought to be responsible for DSP. Acute toxicity test using mice has been the primary method for detection of DSP in the fish market, though an alternative method to quantify DSP without sacrificing mice has been requested. We isolated OABP2, a novel okadaic acid binding protein, from the marine sponge Halichondria okadai and succeeded in expression of the recombinant OABP2 in E. coli, which eventually showed high affinity to the DSP toxins.
実用化イメージ

We are now working on visualization of OA by utilizing OABP2 in order to provide an easy and quick quantification method for DSP.

Researchers

Graduate School of Agricultural Science

Keiichi Konoki

Development of a novel therapeutic drug, TMS-007, for acute cerebral infarction

特徴・独自性
  • The currently approved fibrynolytic therapy is only alteplase, but the use of it has been limited to 5% of patients with acute cerebral infarction due to possible side effects including hemorrhagic infarction that may be life-threatening. TMS-007 is a novel drug that has both fibrynolytic activity and brain protective effects. The aim of this project is to perform a clinical trial of this drug and to further achieve a commercial-based clinical use. We believe that this drug would contribute significantly in the treatment of acute cerebral infarction.
実用化イメージ

Researchers

Administrative Staff

Teiji Tominaga

Development of a Novel Therapy for Amyotrophic Lateral Sclerosis (ALS) Using Hepatocyte Growth Factor (HGF)

NEXT
PREV
特徴・独自性
  • Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by systematic motor neuron degeneration. Approximately 20% cases of familial ALS are caused by mutations in the superoxide dismutase 1 (SOD1) gene. We developed transgenic rats that express a human SOD1 gene with two different ALS-linked mutations (G93A or H46R) showing progressive motor neuron degeneration and paralysis. The larger size of the rat ALS models as compared with existing mouse models will facilitate studies on neuroprotective and neuro-regenerative strategy involving manipulations of cerebrospinal fluid and spinal cord.
実用化イメージ

Hepatocyte growth factor (HGF) is one of the most potent survival-promoting factors for motor neurons. Continuous intrathecal infusion of human recombinant HGF (hrHGF) attenuated loss of spinal motor neurons, astrocytosis, and microglial activation, leading to prolonged survival in the ALS rats. Safety and toxicology testing of the hrHGF protein in non-human primates should prompt further clinical trials in human ALS patients.

Researchers

Graduate School of Medicine

Masashi Aoki

newDevelopment of a Numerical Prediction System for Sliding Part Wear and Seizure Occurrence Portions

NEXT
PREV
概要

Focusing on the lubricant film flow with phase change between the engine piston pin and connecting rod small end, we developed a new multiphase fluid-structure coupled analysis method that takes into account elastic deformation of the structure and flow path changes and developed a simulation prediction method for tribological properties under high load conditions. The simulation prediction method for tribological properties under high load conditions has been created. As a result, we succeeded in simulation prediction of the wear/seizure generating areas in sliding parts. We discovered that the peculiar deformation behavior of the components is the cause of wear/seizure.

従来技術との比較

It has been thought that computational prediction is impossible to verify the wear and seizure locations in fluid lubrication. Still, this study succeeded in the simulation prediction of wear and seizure locations in sliding parts.

特徴・独自性
  • Numerical prediction of the wear and seizure locations in the sliding parts of engine piston pins was successfully performed.
  • The bow-like deformation of the piston pin was identified as the cause of mechanical contact and seizure at the connecting rod edge.
  • A three-dimensional multiphase fluid-structure coupled analysis method has been successfully developed, considering the piston pin's elastic deformation and connecting rod and thin-film cavitation1 lubrication with unsteady flow path changes.
実用化イメージ

This research method applies to automotive engines and all sliding component elements using fluid lubrication. It contributes to damage prediction and the development of safety guidelines for transportation and industrial machinery components, enabling the optimal design of components.

Researchers

Institute of Fluid Science

Jun Ishimoto

Development of a reaction process in supercritical water

NEXT
PREV
特徴・独自性
  • We are developing a new continuous flow type process for supercritical reactions. Under the supercritical state, the organic molecules and metal salt aqueous solutions are miscible and water molecule works as an acid/base catalyst which leads to rapid reactions. In order to apply such new reaction fields to an industrial process, it is necessary to establish the process design basis by understanding phenomena in the reaction fields, on the basis of phase equilibrium, flux and reaction kinetics theory. So while developing a process, we are doing research for the establishment of the process design basis.
実用化イメージ

Examples are a process for the synthesis of organic modified nanoparticles (MPs), a process for the pretreatment and solubilization of biomass in the supercritical/subcritical water and a process for the refinery of heavy oil in the supercritical water.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri