行の研究テーマ(100

サイクロトロン加速器技術の開発と応用研究

前の画像
次の画像
特徴・独自性
  • サイクロトロン加速器に関連した技術開発および様々なイオンビームや中性子ビームを用いた基礎・応用研究を行っています。具体的には1)イオン源開発(特に重イオン源)、2) イオン光学設計(ビーム輸送技術)、3) 加速器関連の装置制御技術開発、4)高周波共振器の開発、5) イオン・ガンマ線・中性子等の放射線測定、6)イオンビーム・中性子ビームによる放射線耐性試験などです。
実用化イメージ

耐放射線に強い材料や回路を設計するための、陽子からXeに至るまでの重イオンビーム・中性子ビームなど多彩な量子ビームを用いた放射線耐性試験や、高速中性子ビームによるイメージング技術開発。

研究者

サイクロトロン・ラジオアイソトープセンター 加速器研究部

伊藤 正俊  

Masatoshi Itoh

再生可能エネルギーの高効率利用システムの研究

前の画像
次の画像
特徴・独自性
  • 地球規模の環境破壊やエネルギー問題を解決するためには、高効率なエネルギー利用システムの開発と共に、再生可能なクリーンエネルギー利用技術を研究する必要が有ります。我々は、太陽エネルギーや水素などの新エネルギー利用技術に関する研究に取り組んでいます。研究テーマは大きく分けて熱放射スペクトル制御を用いた、高効率な熱エネルギー利用と水素エネルギー社会の実現に向けた固体酸化物燃料電池の研究です。
実用化イメージ

環境調和型のエネルギーシステムにとって重要であり、今後の成長が期待される分野です。

研究者

大学院工学研究科 機械機能創成専攻 エネルギー学講座(新エネルギー変換工学分野)

湯上 浩雄  

Hiroo Yugami

最大限の病変摘出と機能温存を両立させるパルスジェットを用いた手術法の開発

前の画像
次の画像
特徴・独自性
  • 外科手術では転帰改善のため最大限の病変摘出と細血管、神経の温存により術後の機能障害を起こさないことの両立、同時に医療技術の高度化と標準化への要求が高まっている。パルスジェットメスはそうした時代要請に応える新しい手術機器で、既に単独施設の難度の高いトルコ鞍・頭蓋底腫瘍で既存の手術法に比較して有意な腫瘍摘出率の増加、術中出血量の減少、手術時間の短縮効果を報告した。本技術は内視鏡、カテーテル、顕微鏡を含めた低侵襲治療に対応可能な高速の微量流体をパルス状に発生させるもので、1990年代に流体科学研究所・高山研究室で衝撃波の臓器損傷で得られた知見を応用、発展させたものである。現在、効果と利便性、他機器との差別化、操作の快適性、安全性、市場戦略(価格や適応疾患の拡大)に関して多角的な検討を行っている。また、パルスジェットメスが工学的知識を持たない一般ユーザーが安全、快適に使用できる仕様に最適化することも今後の課題であり、企業を含めた共同研究を希望する。
実用化イメージ

研究者

冨永 悌二  

Teiji Tominaga

細胞生物学

前の画像
次の画像
特徴・独自性
  • 細胞小器官の研究は、それぞれの細胞小器官が持つ個性的な内部空間(ルーメン)の機能を解き明かすことを中心に進んできましたが、細胞小器官を形作っている膜そのものにも重要な機能が潜んでいると考え研究をすすめています。
実用化イメージ

自然免疫応答を惹起する重要分子STING は細胞内物質輸送によってその活性が厳密に制御されています。STING の輸送を制御する化合物の開発により、STING が関与する炎症応答を増強・緩和する薬剤につながることが期待されます(製薬業界)

研究者

大学院生命科学研究科 脳生命統御科学専攻 細胞ネットワーク講座(細胞小器官疾患学分野)

田口 友彦  

Tomohiko Taguchi

材料の微視的空間配置を精密制御する微粒子集積プロセスの開発

前の画像
次の画像
特徴・独自性
  • 異種材料を複合化した材料は、構成する材料の複合化状態によって、発現機能が大きく異なる。粒径や形状を制御して微粒子を合成できる技術と、合成した微粒子を設計通りに集積させる技術の融合によって実現する「ビルディングブロック工学」では、構成材料の3次元的な空間配置をメゾスコピックスケールで精密に制御することができ、従来の材料開発では得られなかった優れた機能の発現(相乗効果)や、新たな機能の発見も期待できる材料創製プロセスである。
実用化イメージ

触媒(光触媒も含む)や分離カラムなどの化学関連プロセスのみならず、薬物送達システムや診断薬など医薬関連、コンデンサーや電池などの電子材料関連、屈折率制御材料やセンサーなど光学材料関連分野への用途展開が見込まれる。

研究者

大学院工学研究科 化学工学専攻 プロセス要素工学講座(材料プロセス工学分野)

長尾 大輔  

Daisuke Nagao

作物の子実生産を向上させる生殖形質に関する研究

前の画像
次の画像
概要

近年の異常気象の多発により、作物の種子、果実生産の低下が危惧されている。これまでに低温、高温ストレス下で応答する遺伝子群を同定しており、ゲノム編集などにより、温度ストレス下でも生産が可能なシステムを構築する。

従来技術との比較

従来から用いられている遺伝子組換え手法に加え、ゲノム編集技術により実用に供することが可能な遺伝子改変が可能になった。

特徴・独自性
  • 作物生産とその生産物の作物・子実は、食糧、環境、エネルギー、アメニティに応用でき、地球温暖化にある21 世紀には人類にとって、様々な面においてこれまで以上に重要度が増加している。その作物の子実生産を向上させるためには、昨今の激変する環境ストレスに耐性を有する作物の開発は至上命題である。特に環境ストレスに対して弱い受粉・受精の生殖形質を改変し、種子、果実生産を向上させることを目的とする。
実用化イメージ

高温、低温ストレス下で子実生産を左右する遺伝子群を同定している。収量増を見込めるF1 雑種品種育成に重要な自家不和合性遺伝子の利用も進め、種苗産業などとの連携が可能である。

研究者

大学院生命科学研究科 分子化学生物学専攻 分子ネットワーク講座(植物分子育種分野)

渡辺 正夫  

Masao Watanabe

サステナブル異分野融合型混相エネルギーシステムの創成

前の画像
次の画像
特徴・独自性
  • 本研究分野では、超並列分散型コンピューティングと先端的光学計測の革新的融合研究に基づくマルチスケール先端混相流体解析手法の開発・体系化を目指している。さらに、高密度水素に代表される環境調和型エネルギーに直結した新しい混相流体システムとそれに伴うリスク科学の創成を目的とした基盤研究を推進している。特に、脱炭素P2P マルチグリッド型の相互補償を可能にする多相水素サプライチェーンの構築を目指している。
実用化イメージ

P2P Hydrogen supply chain,Elastohydrodynamic lubrication,Supercomputing of Laser melting andsputter particle formation, High pressurediecast computing / Automotive industry,Additive manufacturing

研究者

流体科学研究所 附属統合流動科学国際研究教育センター 混相流動エネルギー研究分野

石本 淳  

Jun Ishimoto

サプライチェーンを通じた資源利用と関連するリスクの可視化

前の画像
次の画像
特徴・独自性
  • マテリアルフロー解析、産業連関モデルに基づくサプライチェーン解析により資源の流れを明らかにし、資源採掘・精錬・輸送に関わるサプライチェーンの各拠点、経路の各属性別リスクデータとの融合を行い、我が国の科学技術イノベーション政策、資源安全保障に寄与する知を生み出します。
実用化イメージ

これまで共同研究・連携を行った経験があるのは鉄鋼産業、自動車産業です。省資源化技術導入による環境影響評価を行いたい行政機関や事業者との連携も積極的に行っていきたいと思っております。

研究者

大学院環境科学研究科 先進社会環境学専攻 環境政策学講座(環境・エネルギー経済学分野)

松八重 一代  

Kazuyo Matsubae

さまざまな凹凸形状をつかめるピン配列型把持機構

前の画像
次の画像
前の動画
次の動画
概要

対象物の形状が未知の複雑な凹凸形状であっても把持可能で、形状の推定も可能な、簡単な機構のグリッパを開発した。グリッパは、行列に配列した複数のピンと、ピン先端に爪を持つ。このグリッパは、駆動により複数箇所で強固に対象物を把持することができる。

従来技術との比較

本技術では未知の形状も含むどのような形状の対象物に対しても接触可能であり、接触後、複数のピン先を動作させて対象物を強固に把持できる。さらに、形状計測も同時に可能である。

特徴・独自性
  • 対象物が凸形状でも凹形状でも同じ動作原理でピン配列を動作させて接触把持するため、必要なアクチュエータ数は1つだけである
  • ピン配列を水平方向に動作させた際にピンの動きがロックされ、より安定した把持を実現する
  • 対象物に接触させた時のピンの移動量を計測することで、対象物の3次元形状計測も可能である
  • ピン先にゴム製素材を用いる等することで、柔らかい不定形状も把持可能と考えられる
実用化イメージ

搬送システム、産業用機械、不整地移動ロボティクス、土木建設機械、農業用機械などで有効なグリッパ機構を探している企業に有効です。量産・高品質化を目指した改良、実現場への応用を協働する相手を求めています。

研究者

大学院工学研究科 航空宇宙工学専攻 宇宙システム講座(宇宙探査工学分野)

宇野 健太朗  

Kentaro Uno

酸化物エレクトロニクス材料の創製

前の画像
次の画像
特徴・独自性
  • 機能性酸化物材料の創製と物性・機能開発を行う研究に取り組んでいます。パルスレーザー堆積法やスパッタ法を用いた薄膜作製やバルク合成、そして新合成ルートの開発を行っています。最近は、電気伝導性をもつ希土類酸化物、透明導電性をもつ室温強磁性体、ビスマス単原子層を含む層状超伝導体等の酸化物材料を扱っています。今後は、扱う材料の幅を広げ、酸化物へテロエピタキシーにも取り組んでいきます。
実用化イメージ

新規導電性酸化物を活用する酸化物エレクトロニクスや、透明強磁性体や新規強磁性体を用いた酸化物スピントロニクスの分野での共同研究。

研究者

大学院理学研究科 化学専攻 境界領域化学講座(無機固体物質化学研究室)

福村 知昭  

Tomoteru Fukumura

酸素センサー・プロリル水酸化酵素(PHD)を標的とした虚血障害治療薬の開発

前の画像
次の画像
特徴・独自性
  • 全ての生物は酸素を利用してエネルギーを作り出し、生命活動を維持しています。ひとたび酸素濃度が低下すると、その活動が著しく妨げられ、場合によっては死に至ります。局所の低酸素状態が関連する病気の代表例としては、虚血性心疾患、脳卒中、腎臓病などが挙げられます。私たちは、プロリル水酸化酵素(PHD)が低酸素状態を感知するセンサーとして機能していることに着目し、これを制御することで虚血障害を治療する医薬の開発を推進しています。
実用化イメージ

現在、いくつかのPHDを阻害する化合物を得ており、国内外の製薬メーカー等と連携して、非臨床試験から臨床開発へと進め、実用化を目指しています。

研究者

大学院医学系研究科 創生応用医学研究センター 分子病態治療学分野

宮田 敏男  

Toshio Miyata

CFDに基づく将来の温熱風環境の予測・評価と、将来気候に適応可能な都市環境計画

前の画像
次の画像
特徴・独自性
  • 都市屋外の温湿度、風、汚染質濃度といった物理環境の数値シミュレーションによる予測や環境形成要因の解明実測調査による実態把握を行う。また、国・地域スケール、街区スケール、建物スケールの地球温暖化が進行した将来の屋外環境予測・熱中症評価を行う。
    さらに、平常時の夏の暑さや、稀に発生する台風や洪水に強い都市に対する形態(建物形状や配置、街路樹等)の影響を定量化する。
実用化イメージ

数値解析により、設計建物や街区計画、各種暑さ対策技術の導入が、地域の温熱環境や、風の道形成に与える「功罪」、さらには台風等災害発生時における悪影響を定量評価し、導入可否判断材料を提供する。

研究者

大学院工学研究科 都市・建築学専攻 サステナブル空間構成学講座(講座共通)

石田 泰之  

Yasuyuki Ishida

磁気応用技術と磁性材料

前の画像
次の画像
特徴・独自性
  • 磁気工学を基礎とした材料開発ならびに応用技術を研究している。特に磁気の特徴であるワイヤレスを生かした新しいセンサやアクチュエータの開発を、最適な特性を有する材料の開発も含めて行っている。これまでにカプセル内視鏡の駆動技術や内視鏡手術支援用アクチュエータ、補助人工心臓用ワイヤレス駆動ポンプなど医用応用技術や、磁界センサやひずみセンサなど世界最高レベルの感度のセンシング技術、バッテリーレスワイヤレスの温度計測技術、位置検出(モーションキャプチャ)技術などの開発を行ってきた。また材料単独では、損失が極めて低い電磁鋼板の実現や、電気化学的手法を用いてナノスケールで構造を制御した磁性材料(陽極酸化磁性被膜材料)の開発等を行ってきている。
実用化イメージ

上記項目に興味のある企業・団体に対する技術指導・共同研究は随時受け付けている。加えて、磁気に関連する技術に関する広く一般的な技術指導の実績も数多く行っている。

研究者

電気通信研究所 人間・生体情報システム研究部門 生体電磁情報研究室

石山 和志  

Kazushi Ishiyama

事業継続マネジメント(BCM)

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 事業継続マネジメント(BCM) は、企業や公的組織が災害、大事故、テロ、感染症などで甚大な被害を受けた際にも、重要業務を継続または早期復旧するための対応戦略である。また、この計画がBCP で、政府、経済団体等が導入・改善を積極的に推進している。当研究室では、BCM の普及策や改善策を研究しており、政府のガイドライン策定にも深く関与している。仙台で産官学の勉強会、企業との共同研究も行っている。
実用化イメージ

BCM・BCPを導入、改善しようとする企業・組織に求めに応じ助言を行うことができるほか、企業グループなどと連携した普及促進や実践的改善の取組、個別企業との共同研究が想定できる。

研究者

災害科学国際研究所 防災実践推進部門 防災社会推進分野

丸谷 浩明  

Hiroaki Maruya

自己治癒セラミックスの開発および固相変態型蓄熱材料の開発

前の画像
次の画像
特徴・独自性
  • 自己治癒セラミックスの研究を行っています。自己治癒は材料表面の傷を自発的に修復する機能で、強度信頼性の向上に寄与します。主に900-1300℃程度で使用可能な自己治癒セラミックスを開発しており、現在は400℃程度で使用可能な材料開発を進めています。
  • 上記とは別に、700℃程度で鉄系材料の固相変態を利用した蓄熱材料を開発しています。蓄熱後も固相であるため、機械的強度が必要な場所で応用が期待できます。
実用化イメージ

自己治癒材料:金属材料の代替により軽量化が期待できます。(自動車のブレーキロータやジェットエンジンタービン翼等)
蓄熱材料:鉄鋼排熱を利用した木炭製造プロセス等

研究者

大学院環境科学研究科 先端環境創成学専攻 太陽地球システム・エネルギー学講座(資源利用プロセス学分野)

丸岡 大佑  

Daisuke Maruoka

試作コインランドリ −MEMSを中心とする半導体試作共用設備−

前の画像
次の画像
前の動画
次の動画
概要

4 インチ、6インチ、一部8インチのMEMSを中心とした半導体試作開発のための共用設備で、必要な装置を必要なときに時間単位でお使いいただけます。東北大学に蓄積された関連ノウハウが利用可能で、スタッフが試作を最大限支援します。東北大学西澤潤一記念研究センターの2 階スーパークリーンルームのうち、約1,200m2を主に利用しています。装置、料金については、ホームページをご覧ください。

従来技術との比較

経験豊富な10人以上の技術スタッフが支援します。エッチング、成膜などの各プロセスの標準的な加工条件を提供していますので、ご要望に応じた試作がすぐに開始できます。シリコン以外の様々な材料にも対応します。

特徴・独自性
  • MEMS、光学素子、高周波部品などのデバイスのほか、半導体材料開発などに対応します。
  • 試作前、試作途中における、デバイスやプロセスの技術相談にも対応しています。
  • デバイスの実装工程に対応する「プロトタイプラボ」も利用できます。
  • 半導体、計測器、センサなどの歴史を学んでいただける博物館もご覧いただけます。
  • 東北大学半導体テクノロジー共創体の一部として、半導体の研究開発、人材育成を推進しています。
  • 学生、企業技術者向けの半導体人材育成プログラムをオンデマンドで実施しています。
  • 文部科学省マテリアル先端リサーチインフラ(ARIM)事業のメンバーとして、設備とデータの共用に取り組んでいます。
実用化イメージ

2010年の開始以降310社以上の企業が利用しています。MEMS等のデバイスメーカーはもちろん、材料や機械部品、装置メーカーからも利用があります。これまでに約10件の実用化支援事例があります。

研究者

マイクロシステム融合研究開発センター

戸津 健太郎  

Kentaro Totsu

磁石は地球を救う!-高性能永久磁石材料の開発(エネルギー・資源問題の解決に向けて)-

前の画像
次の画像
特徴・独自性
  • 永久磁石材料の高性能化と新材料開発を行っている。これまでの成果に未分離混合希土類-Fe-B系焼結磁石、HDDR現象による高保磁力希土類磁石粉末、再結晶集合組織による高性能Fe-Cr-Co系磁石の開発などがある。最近ではNd-Fe-B系磁石におけるDyの削減技術の開発や、永久磁石の自然共鳴がGHz 帯にあることに着目した新しい電磁波吸収体ならびにナノ粒子技術による高周波磁性材料の開発も行っている。
実用化イメージ

業界としては磁性材料に興味または生産している素材・材料関連、自動車関連、電気・電子関連、化学関連企業など。

研究者

大学院工学研究科 知能デバイス材料学専攻 情報デバイス材料学講座(スピン情報材料学分野)

杉本 諭  

Satoshi Sugimoto

システム変革を鑑みた半導体材料から素子応用に関する 研究開発

前の画像
次の画像
特徴・独自性
  • (1)光通信用半導体レーザ:1981年、通信波長1.55μmでの単一縦モードでの室温連続発振。ファイバ当たりの伝送容量を25千倍の10Tb/sに増大。(2)窒化物半導体青色LED:InGaAlN提案(1987年)、発光材料InGaN単結晶薄膜成長(1989年)。本技術は市販の青色LED作製の標準技術。高周波・高出力トランジスタ:逆HEMT作製。車用トランジスタ実現のためGaN基板開発中。
実用化イメージ

光通信用分布帰還型レーザ作製技術:サブミクロン周期構造作製、レーザの作製プロセス・素子評価・シミュレーション/窒化物半導体関連技術:有機金属気相成長、結晶評価、発光素子‧太陽電池‧電子素子の作製と評価

研究者

未来科学技術共同研究センター 開発研究部 窒化物半導体の結晶成長と光デバイス・電子デバイスの研究

松岡 隆志  

Takashi Matsuoka

次世代環境適合技術流体実験共用促進事業 次世代流動実験研究センター 低乱熱伝達風洞

前の画像
次の画像
特徴・独自性
  • 低乱熱伝達風洞
  • 低乱熱伝達風洞は、台風並みの最大風速80m/s を有し、気流乱れ0.02% 以下と極めて低い世界トップレベルの風洞です。本風洞は、文部科学省による「先端研究施設共用促進事業」に採択され産業界へ施設の共用を進めて参りました。平成28 年度より、事業を発展させ「風と流れのプラットフォーム」として、基礎研究からイノベーション創出に至るまでの科学技術活動全般に貢献して行きます。
  • 磁力支持天秤装置
  • 世界トップレベルの風洞に模型を支柱で支持することなく磁場を用いて空中に保持できる世界最大サイズの「磁力支持天秤装置」を導入いたしました。本装置を用いることで支柱による干渉を受けることなく正味の空気力を測定することが可能となります。本装置も風洞と同様に産業界へ施設共用しており、一般利用可能な世界唯一の装置です。
  • 風と流れのプラットフォーム
  • 航空機が巡航しているような相対的に乱れのない流れや地上でのビルに当たる風など、風や流れの性質には様々な様相があります。このため風を作る装置として「風洞」と一言で言っても用途に応じて様々な風洞が存在します。また、風洞では全ての情報を得ることは難しいため今日では、スーパーコンピュータの支援を伴うことが一般的となってきました。
  • これらのことから、「風と流れのプラットフォーム」としてスーパーコンピュータ、風洞群をセットで共用に供し、分野を問わず、風と流れに関する様々なユーザニーズに対応した高度利用支援を行い、流体力学に立脚する科学技術イノベーションを協力に促進することを目指しています。
実用化イメージ

本風洞は、共同研究に限らずどなたでもご利用できます。また、リエゾン室を設置することにより利用相談、試験の支援をはじめ、風洞利用経験のない利用者へのサポートも行っています。

研究者

流体科学研究所 流動創成研究部門 宇宙熱流体システム研究分野

永井 大樹  

Hiroki Nagai