行の研究テーマ(100

生体組織内のタンパク質等多成分拡散現象に関する研究

前の画像
次の画像
特徴・独自性
  • 物質拡散係数の高精度測定は、諸々の熱物性値測定の中でも極めて困難であり、特にタンパク質においては物質自体が稀有であること、および分子数が大きいため拡散現象が非常に遅いことなど、多くの点から困難とされてきた。これに対し、当研究分野では最新画像処理技術を用いることにより、少量のタンパク質試料で微小非定常拡散領域を高精度に測定する方法を開発した。既存の光学系に位相シフト技術を組み込むことで、解像度がλ /100 程度の精度を実現し、拡散場内のわずかな濃度変化も検知できるシステムを測定系を構築した。生体組織内に代表されるような極限環境下では複数の物質が同時に物質移動する多成分系拡散現象がおきている。本測定法では同時に複数の物質の拡散係数を測定できる特徴を有しており、この測定法を用いることで多成分拡散現象を定量的に評価できる。この技術を産業界で活用したい企業や団体との共同研究を強く希望する。
実用化イメージ

研究者

流体科学研究所 複雑流動研究部門 伝熱制御研究分野

小宮 敦樹  

Atsuki Komiya

生態学

特徴・独自性
  • 生態系の複雑性(多次元性や非線形性)を考慮した生態学を推進している。食物網、多種共存や生態系機能に関する理論研究のほか、特に最近は環境DNAや音響観測といった手法に基づく生態系観測や大規模観測データに基づいた実証研究、生態系の動態予測・制御の問題に興味がある。
実用化イメージ

研究者

大学院生命科学研究科 生態発生適応科学専攻 生態ダイナミクス講座(統合生態分野)

近藤 倫生  

Michio Kondo

生体機能の可視化および制御技術の開発

概要

従来技術との比較

特徴・独自性
  • 生体分子の機能を正しく理解するには他の生体分子との相互作用が保たれた状態、すなわち生きた状態で観察することが重要です。そこで、有機化学および蛋白質科学の双方からのアプローチにより新たな機能性分子を開発し、生体分子の可視化および光を用いた機能制御に取り組んでいます。特に、オルガネラ内の分子やイオン濃度の定量や、蛋白質機能を光操作するケージド化合物あるいはフォトスイッチ化合物の開発に実績があります。
実用化イメージ

研究者

多元物質科学研究所 有機・生命科学研究部門 細胞機能分子化学研究分野

水上 進  

Shin Mizukami

生体材料やシミュレーションによる医療デバイス開発

前の画像
次の画像
特徴・独自性
  • ハイドロゲルを用いて、医療デバイスの状態を視認できるように、透明で表面摩擦抵抗が低く、ヒト血管の力学的特性および形状を忠実に再現できる全身血管モデルや、骨のモデルを開発しています。また、最適化手法を用いた医療デバイスの最適なデザインの研究として、特に、脳動脈瘤治療用ステント、カテーテルなどの開発をしています。これらは、デバイス開発のための動物実験の減少にも、貢献が期待されます。
実用化イメージ

医療デバイス開発を進める企業、業界との連携が可能。医療画像診断装置や画像処理、MEMS を用いた応用展開、標準化開発業界、医療トレーニング企業、高分子素材企業など様々な場面で応用が期待できます。

研究者

流体科学研究所 流動創成研究部門 生体流動ダイナミクス研究分野

太田 信  

Makoto Ohta

生体信号の解析と視覚化

前の画像
次の画像
特徴・独自性
  • 多彩なセンサーの開発やICT 技術の発展により、膨大な生体信号を記録・保存することが可能になってきた。我々は、その信号を、病気の診断や健康の増進への利活用を目指して様々な信号処理方法を研究している。例えば、妊娠中の母親の腹部に張り付けた電極から子宮内胎児の心電図を高精度に抽出するアルゴリズムや、多種の生体信号の時間的関係から自律神経系などの状態を推定し、可視化するアルゴリズム等の開発を行っている。
実用化イメージ

生体信号の解析・可視化・診断システム。
自動車運転手や各種システムオペレータの集中度や眠気のモニタリング・評価。
生体リズムの特性を考慮した就労スケジューリング。

研究者

未踏スケールデータアナリティクスセンター データアナリティクス研究部門

中尾 光之  

Mitsuyuki Nakao

細胞内在の転写因子活性の定量評価

前の画像
次の画像
特徴・独自性
  • 遺伝子発現プロファイルを計測する手法は多様にあるが、遺伝子の発現を制御する転写因子の活性を定量評価する技術は不足している。我々は生体組織内細胞や培養細胞が発現する複数の内在転写因子の転写活性を直接定量評価する技術を開発した。本技術を用いることにより病態や生理活動に関連して生体組織内細胞の状態がどのように変化するのか解析することができる。転写因子活性を指標にした慢性疾患の病理解明、転写因子活性をモニターすることによる医薬品の開発や薬品の効能、副作用のスクリーニングなどに有用であると考えられる。
実用化イメージ

研究者

大学院生命科学研究科 脳生命統御科学専攻 神経ネットワーク講座(脳機能発達分野)

安部 健太郎  

Kentaro Abe

生体用モーションキャプチャシステムの開発

前の画像
次の画像
特徴・独自性
  • 生体に関する様々な運動を非接触かつ非侵襲的に計測することが可能な生体用モーションキャプチャシステムの開発を行っています。口腔内など遮蔽された空間でも利用可能な磁気式システムでは、最新の磁気工学技術によるLC 共振型磁気マーカを利用し、外部からの磁場印加によるシステムのワイヤレス化を実現しました。さらに光学式システムでは小型軽量の赤外線反射マーカを利用し、250ヘルツにて50 箇所までリアルタイムでの同期的計測が可能なシステムの開発に成功しています。
実用化イメージ

本システムでは生体に関する様々な動作解析が可能で、非接触かつ非侵襲的な動作解析を必要とする診断・医療機器などへの応用が可能です。条件に合わせてシステムを特化することもできるので、本システムを活用したい企業や団体との共同研究を希望します。

研究者

大学院歯学研究科 附属歯学イノベーションリエゾンセンター 異分野共創部門

金髙 弘恭  

Hiroyasu Kanetaka

生物活性天然物をもとにした化合物ライブラリー合成法

前の画像
次の画像
特徴・独自性
  • 生物活性をもつ天然物の骨格をもとに迅速な類縁体合成法を開発している。環状デプシペプチド、複素環化合物、テルペン、ステロイド、糖鎖、さらにそれらのハイブリッド化合物等幅広い化合物の合成に精通している。化合物ライブラリーを構築するため、固相法を用いたコンビナトリアル合成法を開発している。HDAC 阻害、テロメラーゼ阻害、V-ATPase 阻害作用をもつ化合物の合成を行っている。
実用化イメージ

標的タンパク質を明らかにするためのペプチドタグと生物活性化合物を連結する分子プローブ合成法を確立している。固相合成を利用して類縁体を迅速合成して創薬のシーズを探索する研究のほか、結合タンパク質のネットワーク解析のプローブ合成について学術指導および共同研究する準備がある。

研究者

大学院薬学研究科 分子薬科学専攻 分子制御化学講座(反応制御化学分野)

土井 隆行  

Takayuki Doi

生物活性の探索をアウトソーシングしませんか - ウイルス・腫瘍・細菌を中心に -

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 当研究室では様々な生物活性探索アッセイ方法を確立しています。その成果として日本たばこ産業と共同開発した抗HIV 剤、エルビテグラビルが臨床応用されています。他にも、新規の作用機序を有する逆転写酵素阻害剤(EFdA) や抗ガン剤(S-FMAU)を開発してきました。具体的には、1)抗ウイルス剤・抗菌剤などの活性評価、2)抗腫瘍活性の測定、3)新たなスクリーニング法の確立などを行います。
実用化イメージ

新たなターゲットに対するhigh through-put screening 確立の受託も可能ですので個別にご相談ください。P3実験施設を必要とする共同開発や他の微生物を含めた学術指導にも応じます。

研究者

災害科学国際研究所 災害医学研究部門 災害感染症学分野 医学研究科・医学部・大学病院・東北メディカル・メガバンク機構(兼務)

児玉 栄一  

Eiichi Kodama

生物のようにレジリエント(しなやかでタフ)な人工物の開発

前の画像
次の画像
特徴・独自性
  • 生物は、比較的単純な機能を有する要素が多数集まって相互作用することで、予測不能的に変動する実世界環境下であってもしぶとくかつタフに振る舞うことができる。当研究室では、自律分散制御という概念を基盤として、このように優れたリジリアンスを持つ生物の設計原理の解明を通して、従来の人工物に比べて著しい環境適応性や耐故障性を有する人工物の設計・開発に関する研究を進めている。
実用化イメージ

大自由度システムの制御や、実世界環境下で適応的に行動するロボットの開発など。

研究者

電気通信研究所 人間・生体情報システム研究部門 実世界コンピューティング研究室

石黒 章夫  

Akio Ishiguro

生物模倣材料・デバイスの開発

前の画像
次の画像
特徴・独自性
  • 生物の優れた機能を学び、材料・デバイスの創成に取り入れることで、生物を超える機能を示す機能を創出する『生物模倣工学』を目指しています。例えば、ムール貝に学んだ表面処理・接着剤の開発、ウツボカズラに学んだ抗生物付着基板の開発、ヘモグロビンに学んだ高活性燃料電池(水素・酵素・微生物等)の非白金触媒設計、生物の針に学んだ針型バイオセンサーなど多岐にわたります。
実用化イメージ

電気化学、高分子化学を基盤に金属空気電池・燃料電池・表面処理・接着・バイオセンサー等を含むエネルギー・バイオ・電気電子領域に関する技術・知見を提供します。

研究者

高等研究機構学際科学フロンティア研究所 新領域創成研究部学際基盤研究分野 デバイス・テクノロジー研究領域

阿部 博弥  

Hiroya Abe

精密ものづくり計測に関する研究

前の画像
次の画像
特徴・独自性
  • 精密加工品の形状及び精密機械の運動を必要な精度で計測するという精密ものづくり計測の研究に取り組んでいる。独自の計測原理に基づいて、グレーティングなどの微細格子と波動光学系を組み合わせることによって、超精密ものづくり計測の基本道具となる高精度かつコンパクトな多軸変位、角度センサを実現させている。各種超精密及びマイクロ加工品の形状を高速高精度に測定する実用的なシステムの開発も行っている。
実用化イメージ

多軸変位、角度センサは半導体及び電子部品製造・検査装置、超精密加工機、超精密測定機の運動計測に活用され、また、形状測定システムは超精密加工分野で利用されることを期待し、産業界との共同研究を希望する。

研究者

大学院工学研究科 ファインメカニクス専攻 ナノメカニクス講座(精密ナノ計測学分野)

高 偉  

I Ko

析出強化型Co基超耐熱合金

前の画像
次の画像
特徴・独自性
  • これまで、Co基合金は高温材料として利用できる金属間化合物γ’相が存在しないため、高温強度がNi 基合金に比べて低い問題がありました。我々は、新しい金属間化合物相Co3(Al、W) γ’相を発見し、γ/γ’型Co-Al-W 基鋳造及び鍛造合金で優れた高温強度が得られています。1100℃以上の超高温用としてはIr-Al-W 合金があります。また、Co 基合金は耐摩耗性に優れる特徴を有しています。例えば、摩擦攪拌接合(FSW)ツールとして優れた特性を示し、従来、FSWが困難であった鉄鋼材料やチタン合金などの接合に対しても高いパフォーマンスを確認しています。各種、高温部材、耐摩耗部材、FSW への適用に向けた共同研究を希望します。
実用化イメージ

研究者

大学院工学研究科 金属フロンティア工学専攻 創形創質プロセス学講座(計算材料構成学分野)

大森 俊洋  

Toshihiro Omori

赤血球分化の新規調節機構を標的とした斬新な貧血治療薬の開発

前の画像
次の画像
特徴・独自性
  • 貧血は世界で最も罹患率の高い疾患であるが、輸血やエリスロポエチンなどの既存治療法の効果はしばしば限定的である。我々は代謝酵素の抑制により、赤血球産生が促進される事を発見し、新たな貧血治療戦略を見出した。さらに、同酵素活性をモニターできる人工遺伝子を開発し、スクリーニング系を確立している。
実用化イメージ

産学連携により、この新しい制御機構を標的とする低分子化合物等の探索・評価を迅速に進め、斬新な貧血治療薬の開発へとつなげたい。また、ドラッグリポジショニングの可能性についても共同で検討していきたい。

研究者

大学院医学系研究科 医科学専攻 細胞生物学講座(生物化学分野)

五十嵐 和彦  

Kazuhiko Igarashi

セラミックスのイオン輸送を利用した燃料電池とエネルギー貯蔵

前の画像
次の画像
特徴・独自性
  • イオン導電性セラミックスを用いて高温で動作する固体酸化物形燃料電池は、様々な燃料を高い効率で利用することができる発電システムです。当研究室では、さらなる高性能、低コスト、高信頼性を達成するために、材料の電気化学的・機械的挙動について、基礎的・多角的な研究を行っています。また、燃料電池の逆反応を用いて、再生可能エネルギーから得た電力を水素やメタンとして貯蔵する研究も行っています。
実用化イメージ

学内外の研究機関や企業・団体と協力しながら、燃料電池技術の商用化に向けて取り組んでいます。また、機能性材料のイオン輸送、界面反応、機械的特性の評価・解析技術を通して、新技術の開発にも貢献します。

研究者

大学院環境科学研究科 先進社会環境学専攻 エネルギー資源学講座(分散エネルギーシステム学分野)

川田 達也  

Tatsuya Kawada

繊維質物質を用いた高含水比泥土再資源化技術の開発

前の画像
次の画像
特徴・独自性
  • 建設汚泥やヘドロなどの泥土は、含水比が高いため直接利用が困難であり、リサイクル率が低いのが現状である。そこで、本研究室では軟弱泥土に古紙破砕物とセメント系固化材を混合し、良質な土砂に再資源化する繊維質固化処理土工法(ボンテラン工法)を開発している。本工法の最大の特徴は、泥土の再資源化の過程で古紙と泥土を混合する点であり、土砂内部に含まれる繊維質物質が様々な優れた地盤工学的特徴を生み出している。
実用化イメージ

本工法により生成される土砂は、破壊強度および破壊ひずみが大きい、乾湿に対する耐久性が高い、動的強度が高く液状化し難いといった特徴を有するため、堤防の補強盛土など様々な土構造物の構築に使用可能である。

研究者

大学院環境科学研究科 先進社会環境学専攻 資源戦略学講座(地球開発環境学分野)

高橋 弘  

Hiroshi Takahashi

先端ワイヤレス通信

前の画像
次の画像
特徴・独自性
  • 地上系・衛星系を統合した高度情報ネットワークの実現を目指して、高信頼かつ電力消費の少ない先端ワイヤレス通信技術に関して、高周波回路・信号処理回路・RFIC・実装技術から送受信機技術、変復調・ネットワーク技術に至るまで、一貫した研究・開発を行っている。
実用化イメージ

地上無線通信あるいは衛星通信用の送受信機のハードウェア技術、たとえば、ディジタルRF、フェーズドアレーアンテナなどのビームフォーミング回路、ソフトウェア無線機の技術に関して、共同研究が可能と考えています。

研究者

電気通信研究所 情報通信基盤研究部門 先端ワイヤレス通信技術研究室

末松 憲治  

Noriharu Suematsu

創・省エネルギー無機材料の創製

前の画像
次の画像
特徴・独自性
  • 新しい材料の登場は、我々が予想もしない波及効果を生み出す力を秘めています。私たちの研究グループでは、化学結合や電子構造の理解に基づく材料設計、固体中のイオン移動を利用した材料創製プロセス、固相、液相、気相法など各種のプロセスを基盤技術として、エネルギー製造や省エネルギーを成し遂げる新材料を提供すべく、材料の設計から、製造プロセスの開発、プロトタイプ素子の作製までをカバーした研究を展開しています。
実用化イメージ

現在は、太陽電池、燃料電池を主なターゲットとし、酸化物半導体、プロトン伝導性電解質・電極材料などの研究を実施しています。新しい無機材料の創製技術の適用範囲は、これらに限定的されるものではありません。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 原子空間制御プロセス研究分野

小俣 孝久  

Takahisa Omata

ソトス症候群の簡易スクリーニング法の開発

前の画像
次の画像
特徴・独自性
  • ソトス症候群はNSD1遺伝子の欠失または点変異によるハプロ不全により発症する小児期の顕著な過成長、特異的頭顔面、精神発達障害など多様な症状を呈する常染色体優性遺伝性疾患であるが、NSD1点変異の特定は困難で診断に至らないケースも少なくない。当研究グループはNSD1のハプロ不全で顕著な発現調節を受ける遺伝子群の特定に成功し、これらの遺伝子群の定量による本症のスクリーニング法の開発に取り組んでいる。
実用化イメージ

ソトス症候群のスクリーニングのための臨床検査法の開発を企業と共に取組み、過成長と精神発達障害を来す児の鑑別のための臨床応用を行うことを希望する。

研究者

大学院医学系研究科 医科学専攻 神経・感覚器病態学講座(精神神経学分野)

富田 博秋  

Hiroaki Tomita

ソフトでウェットな計測・発電デバイス

前の画像
次の画像
特徴・独自性
  • モノづくり工学の次代ステージは、エネルギー効率や生命環境親和性に優れるバイオ材料(タンパク質や細胞)の機能活用である。我々は、脆弱なバイオ材料の機能を最大限に活用する技術体系の構築に取り組んでおり、「ハイドロゲルへの電気配線技術(画像㈰)」、「バイオ組織化の電気制御技術(画像㈪)」、「酵素電極シールの作製技術(画像㈫)」などを実現している。
実用化イメージ

上記技術は、「細胞アッセイシステム」、「DDS デバイス」、及び酵素発電で駆動する「健康医療機器」などに活用され、健康・医療・創薬・食品・化粧品業界に関係すると期待している。

研究者

大学院工学研究科 ファインメカニクス専攻 バイオメカニクス講座(バイオデバイス分野)

西澤 松彦  

Matsuhiko Nishizawa