行の研究者 86人

破骨細胞が関与する疾患の予防剤又は治療剤

特徴・独自性
  • 我々は破骨細胞の活性を指標としたライブラリースクリーニングの研究により、ニコチン性アセチルコリン受容体(nAChR)の阻害薬が破骨細胞分化を抑制することを明らかにし、その中でも特にα7-nAChRの拮抗作用をもつmethyllycaconitine(MLA)等の選択的拮抗薬が、破骨細胞分化を効果的に抑制することを見出した。本発明は、この知見に基づき完成されたものであり、破骨細胞分化抑制剤、破骨細胞による骨吸収抑制剤、骨再生促進剤、及び骨吸収性疾患の予防又は治療剤、並びに破骨細胞分化促進剤、及び破骨細胞の機能低下に起因する疾患の予防又は治療剤等を提供する。
実用化イメージ

本発明は、破骨細胞分化を制御する受容体(α 7-nAChR)をターゲットとした強い特異的効果をもつ新薬に繋がる可能性が期待される。今後、α7-nAChRの選択的拮抗薬が、骨粗鬆症、関節リウマチにおける骨吸収を阻害する薬剤の開発に多大な貢献をすることが期待される。また、歯科では、歯周病における炎症性骨吸収の治療薬や、抜歯後の歯槽骨吸収を抑制する治療に貢献する可能性が考えられる。

研究者

大学院歯学研究科 歯科学専攻 リハビリテーション歯学講座(分子・再生歯科補綴学分野)

江草 宏  

Hiroshi Egusa

量子もつれ光源の研究開発

前の画像
次の画像
特徴・独自性
  • 量子コンピュータ、量子暗号などに代表される量子情報通信技術は、現在の古典的情報処理や情報通信技術の限界を打ち破る全く新しい情報通信技術を切り拓くものとして注目を集めています。量子もつれは、そのような量子情報通信技術に不可欠な重要なリソースです。なかでも、高い効率で量子もつれ光子を発生し得る高性能な量子もつれ光源の開発は、将来の量子情報通信の中核的デバイスとして期待されています。
実用化イメージ

半導体や擬似位相整合光学非線形素子を用いた新しい量子もつれ光源の研究を進めており、多くの特許を取得しています。この技術を実用化するための企業や団体との共同研究を希望します。

研究者

電気通信研究所 情報通信基盤研究部門 量子光情報工学研究室

枝松 圭一  

Keiichi Edamatsu

金ナノ粒子と生理活性天然物を利用したセンサー物質開発研究

前の画像
次の画像
特徴・独自性
  • 金ナノ粒子を使用した検査薬の担持物質として、これまではタンパク質(レクチン等)や単純な有機化合物が使用されてきた。一方、生理活性天然物は医農薬指向で研究されてきたが、多様な作用機構を応用すれば検査薬に使用可能と考えられる。これらの性質を組み合わせることで新奇センサー物質の創成が可能と予想される。
実用化イメージ

生理活性天然物の活性発現機構に着目することで、従来技術(抗体等)では検出が難しかった物質(低分子化合物・金属イオン等)の検出が可能になると期待できる。

研究者

大学院農学研究科 農芸化学専攻 生物化学講座(生物有機化学分野)

榎本 賢  

Masaru Enomoto

AIチップが切り拓く賢い省エネと安全の輸送技術

前の画像
次の画像
特徴・独自性
  • 遠藤研究室では、これまで提案し研究してきた㈰高効率のパワーデバイス&パワー制御回路技術、㈪スピン素子を融合した極限省エネな知的集積回路&パワーマネジメント技術、㈫3次元構造デバイスによる極限集積システムのための新規材料プロセス技術(プラットフォーム構築)をコア技術として、パワーエレクトロニクスと知的ナノエレクトロニクスの融合技術へと発展・展開させ、更なる高性能化と省エネ化の両立という社会的要請に応える新しいグリーンパワーエレクトロニクス領域を創出することを目指しシステムアーキテクチャ、回路、デバイス、CADまでの研究・開発を、一貫して行っています。
実用化イメージ

省エネデバイスとパワーデバイスおよびその集積回路技術をコアとして、革新的な高効率エネルギー変換、高度パワーマネジメントの創出を目指し研究開発を行っています。本研究に興味のある企業や団体との共同研究を希望します。

研究者

大学院工学研究科 電気エネルギーシステム専攻 エネルギーデバイス工学講座(グリーンパワーエレクトロニクス分野)

遠藤 哲郎  

Tetsuo Endoh

新奇な量子物性を示す強相関電子物質の開発

前の画像
次の画像
特徴・独自性
  • 強相関電子系とは、クーロン斥力により強く相互作用する電子集団のことです。私たちは、物質合成と物性測定を相乗させることで、強相関電子系が示す新奇な量子物性を開拓しています。高圧合成法を含む様々な固体化学的手法を駆使することで物質を合成し、得られた試料の電気的・磁気的・熱的・光学的な物性を評価しています。さらに、極限環境や量子ビームを活用した特殊な計測も推進しています。こうした物質合成を基盤に据えた総合的な実験研究を通して、超伝導・磁性・トポロジカル秩序などの強相関量子物性を探求しています。
実用化イメージ

強相関電子系は、巨視的スケールで量子効果が現れることで、劇的な機能を示します。大きなエネルギースケールを有する遷移金属化合物は、次世代テクノロジーの基盤材料としての可能性を秘めています。

研究者

大学院理学研究科 物理学専攻 電子物理学講座(巨視的量子物性分野)

大串 研也  

Kenya Ohgushi

全てを最適化する Optimal Society

前の画像
次の画像
特徴・独自性
  • 量子アニーリングと呼ばれる最適化技術を世界でいち早く産業化に向けて、その限界を突破する基礎技術、複数の企業との応用可能性の探索に取り掛かっている。
  • その手法の優位性は、一度最適化したい目標を描くコスト関数を定式化するだけで利用できる点だが、我々はさらに最適化しやすい形、学習による逐次最適化、ブラックボックス最適化など、手法にとどまらない展開をしている。
  • 特に自動運転、工場内の物流、災害時の避難誘導へ応用展開中である。
実用化イメージ

各種車両の自動運転、災害時の避難経路誘導などの経路探索問題、工程スケジューリングや多大な組合せ問題への応用。
各業界における組合せ最適化問題への課題解決方法を提供可能。
( 交通・流通、製造、材料、創薬等)

研究者

大学院情報科学研究科 情報基礎科学専攻 情報応用数理学講座(数理情報学分野)

大関 真之  

Masayuki Ohzeki

生体材料やシミュレーションによる医療デバイス開発

前の画像
次の画像
特徴・独自性
  • ハイドロゲルを用いて、医療デバイスの状態を視認できるように、透明で表面摩擦抵抗が低く、ヒト血管の力学的特性および形状を忠実に再現できる全身血管モデルや、骨のモデルを開発しています。また、最適化手法を用いた医療デバイスの最適なデザインの研究として、特に、脳動脈瘤治療用ステント、カテーテルなどの開発をしています。これらは、デバイス開発のための動物実験の減少にも、貢献が期待されます。
実用化イメージ

医療デバイス開発を進める企業、業界との連携が可能。医療画像診断装置や画像処理、MEMS を用いた応用展開、標準化開発業界、医療トレーニング企業、高分子素材企業など様々な場面で応用が期待できます。

研究者

流体科学研究所 流動創成研究部門 生体流動ダイナミクス研究分野

太田 信  

Makoto Ohta

ヒトの五感に訴える新製品・新分野を開発-亜臨界溶媒分離法における実験と理論の開発―

前の画像
次の画像
概要

超臨界/亜臨界抽出分離技術とは、水や二酸化炭素等の物質を高圧・高温にした際に、それらが液体と気体の両方の性質を併せ持った流体(超臨界/亜臨界流体)となることを利用し、その流体を用いてこれまで分けられなかった様々な物質を抽出分離できる技術です。特に亜臨界抽出では、より温和な条件での抽出分離を実現しています。有機溶剤を使用しないグリーンな抽出分離プロセスや装置、理論の研究開発を行っています。

従来技術との比較

開発した亜臨界溶媒分離法は,在来型の蒸留・抽出・分離等の化学工学プロセスとは異なり,大幅なスケールダウンを実現できることがメリットです。

特徴・独自性
  • 水,エタノール,二酸化炭素等の環境溶媒のみを製造工程に用いることができる
  • SDGsの推進
  • 日本発の医薬食品・飲料・化粧品・化成品等の製造工程のグリーンイノベーション
  • これまでに分離できなかった、利用できていなかった有用成分の利活用
実用化イメージ

低極性・高極性化合物や沸点の異なる化学物質の分離に長けています.クロマト法の精密性には及びませんが,物質群としての分離・分画操作には向いています.医薬食品・飲料・化粧品・化成品等の分野に応用できます。

研究者

大学院工学研究科 附属超臨界溶媒工学研究センター 溶媒要素技術部

大田 昌樹  

OTA Masaki

浮体式洋上風車・次世代航空機の非線形空力弾性・マルチボディ解析技術

前の画像
次の画像
概要

浮体式洋上風車・次世代航空機は軽量細長なブレード・翼を有するため,非線形空力弾性変形が避けられません.本研究では回転座標を一切使わない高効率な非線形空力弾性解析法を構築してきました.また,この非線形空力弾性変形は浮体の揺動や航空機の舵面駆動といったボディ同士の相対運動(マルチボディダイナミクス)と連成します.我々は支配方程式レベルからこの新たな連成問題に対する解析法の構築に取り組んでいます.

従来技術との比較

本研究で提案する非線形解析法を用いれば,従来の線形解析法では捉えることができない大変形に伴うフラッタ発生速度の低下や変形と飛行挙動の連成現象を扱うことができます.

特徴・独自性
  • 回転座標を一切使わない分かりやすい非線形構造解析法
  • 大変形に対応した高効率な非定常流体計算法
  • 浮体の揺動や航空機の舵面駆動といったボディ同士の相対運動を捉えるマルチボディダイナミクス
実用化イメージ

流体構造関連機械の挙動予測・空力弾性解析・構造解析・振動解析・空力解析
浮体式洋上風車
衛星航空機高アスペクト比翼旅客機
・ヘリコプター,ドローン
・ロボット,建設機械

研究者

大学院工学研究科 航空宇宙工学専攻 宇宙システム講座(宇宙構造物工学分野)

大塚 啓介  

Keisuke Otsuka

固体ナノ構造中の電子物性解明とデバイス応用

特徴・独自性
  • 微細加工によりナノメートルスケールの微細構造を作製し、その電気的性質の解明とデバイス応用の研究を進めています。
実用化イメージ

精密・高速電気測定(低ノイズ、単一電子検出等)、極低温・高磁場測定、微細加工、データ科学手法などが得意です。これらがお役に立てることがございましたら、ぜひお知らせ下さい。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

大塚 朋廣  

Tomohiro Otsuka

固体ナノ構造を用いた量子デバイスの研究

特徴・独自性
  • 固体ナノ構造中で生じる量子状態を利用して、量子センサや量子ビット等の量子デバイスの研究を進めています。
実用化イメージ

単一電子スピン状態等の量子状態の電気的精密・高速測定、制御、データ科学手法などが得意です。これらがお役に立てることがございましたら、ぜひお知らせ下さい。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

大塚 朋廣  

Tomohiro Otsuka

析出強化型Co基超耐熱合金

前の画像
次の画像
特徴・独自性
  • これまで、Co基合金は高温材料として利用できる金属間化合物γ’相が存在しないため、高温強度がNi 基合金に比べて低い問題がありました。我々は、新しい金属間化合物相Co3(Al、W) γ’相を発見し、γ/γ’型Co-Al-W 基鋳造及び鍛造合金で優れた高温強度が得られています。1100℃以上の超高温用としてはIr-Al-W 合金があります。また、Co 基合金は耐摩耗性に優れる特徴を有しています。例えば、摩擦攪拌接合(FSW)ツールとして優れた特性を示し、従来、FSWが困難であった鉄鋼材料やチタン合金などの接合に対しても高いパフォーマンスを確認しています。各種、高温部材、耐摩耗部材、FSW への適用に向けた共同研究を希望します。
実用化イメージ

研究者

大学院工学研究科 金属フロンティア工学専攻 創形創質プロセス学講座(計算材料構成学分野)

大森 俊洋  

Toshihiro Omori

状態図と材料開発

前の画像
次の画像
特徴・独自性
  • 金属、セラミックスにおける状態図の実験的決定と計算状態図の研究を行っています。状態図を基に、優れた性能や特異な機能性を有する新しい構造材料(鉄合金、銅合金、耐熱材料etc.)や機能材料(形状記憶合金、超弾性合金etc.)の提案と、ミクロ組織制御・特性評価を通した材料設計を行っています。特に、相変態を利用した単結晶製造方法の開発や、新規形状記憶合金の開発と制震部材への展開などに取り組んでいます。
実用化イメージ

新規材料開発における基盤技術として、相平衡や状態図を知りたい、ミクロ組織と特性の関係を明らかにしたい、といったニーズに対して連携の可能性があります。

研究者

大学院工学研究科 金属フロンティア工学専攻 創形創質プロセス学講座(計算材料構成学分野)

大森 俊洋  

Toshihiro Omori

第3世代 T細胞レパートリー解析技術開発

前の画像
次の画像
特徴・独自性
  • 病気から身体を守るために、T細胞という免疫細胞が働いています。T 細胞は、その受容体で様々な病原体に対応でき、1020種類ものT 細胞受容体、すなわちレパートリーをもっています。例えば、がんを排除できるT 細胞受容体を特定できれば、このT 細胞受容体をもとにした創薬が可能となり、がんをより効率的に排除できるようになります。T細胞受容体を網羅的に調べる技術(T細胞レパートリー解析技術)は以前からありましたが、精度や効率性に問題がありました。我々はこの問題を克服し、高精度、高効率の解析技術、いわゆる第3世代T細胞レパートリー解析技術を新たに開発しました。
実用化イメージ

この技術はT細胞が関係する疾患全てに応用できるため汎用性が高く、がんや自己免疫疾患、感染症に対する治療薬、ワクチン開発、遺伝子治療などの新規治療法の開発および個別化医療を可能とします。

研究者

加齢医学研究所 加齢制御研究部門 生体防御学分野

小笠原 康悦  

Koetsu Ogasawara

マイクロ流路内の相変化伝熱による高熱流束冷却機構

前の画像
次の画像
特徴・独自性
  • 発熱密度が増大しているシステムにおいて高性能な冷却を達成するために、微細な流路内の沸騰現象を制御し、熱輸送量を高める研究を行っています。沸騰現象の厳密な数値シミュレーションや一次元簡易沸騰シミュレーションを駆使し、理論的な予測に基づく冷却システムの設計を目指しています。
実用化イメージ

発熱密度が増大する情報通信システム用のデバイスや電気自動車等の電力制御システムの冷却が応用先として考えられます。また、理論解析を通じた既存の冷却システムの熱解析や最適化なども対象になります。

研究者

流体科学研究所 複雑流動研究部門 先進流体機械システム研究分野

岡島 淳之介  

Junnosuke Okajima

液体流動を利用した新たなエネルギー変換

前の画像
次の画像
特徴・独自性
  • 2次元材料であるグラフェンの上を1滴の水が滑り落ちる、または連続した流水が流れるときグラフェンに起電力が生じる現象があり、これまでの研究によって発生する起電力が流速と水が接触する界面の面積に比例することがわかっています。この現象を利用してエネルギー、環境分野へ展開する研究を行っています。液体の流動から機械的な変換を経ずに電気エネルギーを得ることができる独創的な研究です。
実用化イメージ

従来とは異なるエネルギー変換機構と基にしており、新たなエネルギーハーベスティング技術となる可能性があります。また従来の発電技術とは相補的な関係となるため、環境資源の有効活用に適した研究です。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(固体電子工学分野)

岡田 健  

Takeru Okada

熱影響・相変態が生じない革新的補修・厚膜コーティング技術

前の画像
次の画像
特徴・独自性
  • コールドスプレー法は、金属粒子を溶融することなく固相状態のまま高速ガス流と共に基材へ衝突させ、成膜する手法です。本法は成膜時の相変態や熱影響の無い皮膜を得ることが特徴であり、これを用いた革新的な補修技術並びにコーティング技術の確立と得られた付着層の信頼性評価を実施しています。また、付着メカニズムおよび得られた皮膜の健全性を評価する目的で、ミクロ/ナノ組織観察および界面強度評価等を実施しています。
実用化イメージ

金属材料のみならず、最近では一部のセラミックスやポリマーの成膜が可能になっております。構造材料としてだけではなく、機能性材料の創製を含めた多方面の企業や団体との連携が可能です。

研究者

大学院工学研究科 附属先端材料強度科学研究センター エネルギー・環境材料強度信頼性科学研究部門(表面・界面制御強度信頼性科学研究分野)

小川 和洋  

Kazuhiro Ogawa

糖鎖精密認識レクチンによる糖鎖解析および細胞制御

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 糖鎖は細胞表面上に糖タンパク質や糖脂質として存在し、細胞間認識や制御など情報伝達機能に関わる。我々は、糖鎖認識分子である各種レクチンを海洋生物などから単離し、構造・機能を明らかにしてきた。例えば、魚類卵ラムノース結合レクチンは、Gb3 を介してIL1 など炎症性サイトカインを誘導する。また、マアナゴガレクチンの進化に基づく各種変異体を作成し、より精密な特異性を持つレクチンの開発にも成功している。
実用化イメージ

レクチンによる糖鎖プロファイリングによるiPS/ES細胞からの分化、がん化などの細胞の機能解析、細胞の分離。アポトーシスなど細胞制御への応用。抗ウィルス機能を利用した抗トリインフルエンザ資材開発等。

研究者

大学院農学研究科 農芸化学専攻 生物化学講座(酵素化学分野)

小川 智久  

Tomohisa Ogawa

社会経済データの高度解析手法とニーズの解明

前の画像
次の画像
特徴・独自性
  • 公共交通の運営計画に役立つ利用者の行動分析を行ってきました。具体的には空港に出入りする交通量の観測値を異なる航空便を使う交通に分解する手法、混雑により潜在化した交通量をその地点を含む多数の地点の交通量から算定する手法などの、高度なデータ統計解析手法を開発してきましたが、それらは交通以外の多様なデータにも適用できる可能性があります。
実用化イメージ

交通をはじめとする公共サービスの需要分析のほか、大規模システムの挙動分析や商品ニーズの分析、マーケティングに活用したい団体や企業との共同研究を希望します。

研究者

災害科学国際研究所 災害人文社会研究部門 レジリエンス計画研究分野

奥村 誠  

Makoto Okumura

Exercise pill、Geroprotector

特徴・独自性
  • 老化は、高齢化社会日本の重要課題であり、むやみな寿命延長ではなく、健康寿命の延長を目指す必要がある。そのために、高齢者の骨格筋萎縮/ Frailty 抑制と老化そのものの抑制する薬剤の開発が急務である。我々は、Exercise pill、Geroprotector 活性を持つ小分子化合物の標的タンパク質の同定を行い、druggable な老化因子の機能解析、SBDDの基礎となるX線構造解析を行っている。
実用化イメージ

複数のExercise pill、Geroprotectorの標的タンパク質、X線共結晶構造からリード化合物を出発点に新しい化合物をデザインして創薬を目指す。

研究者

加齢医学研究所 脳科学研究部門 神経機能情報研究分野

小椋 利彦  

Toshihiko Ogura