行の研究者 32人

振動制御

前の画像
次の画像
特徴・独自性
  • 振動から取り出したエネルギーを使う「自家発電」による振動制御なので、「セルフパワード振動制御」と呼ばれます。回収エネルギーは余りますから、広範囲な用途に使えます。例えば、無電源通信・振動発電・振動エネルギーハーベスティング・ヘルスモニタリングの実施なども可能です。宇宙工学からスピンオフした技術です。高性能な振動発電としても使えます。
実用化イメージ

振動低減・ヘルスモニタリング・無電源無線通信
・ 工場の定常的な振動(回転機械・壁)
・ 電源コードが届かない回転体
・ 人から離れた橋梁・高架下・インフラ全般
・ 低周波騒音対策(防音壁など)

研究者

大学院工学研究科 航空宇宙工学専攻 宇宙システム講座(宇宙構造物工学分野)

槙原 幹十朗  

Kanjuro Makihara

陽極酸化法により創製した二酸化チタンの光誘起機能

前の画像
次の画像
特徴・独自性
  • Ti の陽極酸化は着色技術として実用に供せられている。着色の原理は表面に形成したチタン酸化層の厚み制御による光干渉である。本研究の特徴はこの酸化膜の結晶性を高めることで、光触媒や超親水性等の光誘起性能を付与することで、着色技術とは異なる条件の電気化学条件を選定する点に独自性がある。簡便で廉価な技術によりTi やTi 合金の表面を改質し、光誘起性能による環境浄化性を備えた材料の高機能化を目指す。
実用化イメージ

用途としては、環境浄化材料、生体適合材料・抗菌材料等が考えられ、業界としては脱臭・浄化を手掛ける環境浄化に取り組む業界や、医療器具・医療材料・福祉用具等の医療・福祉業界、そして構造用チタン開発に取り組む業界があげられる。

研究者

金属材料研究所 附属新素材共同研究開発センター 物質創製研究部

正橋 直哉  

Naoya Masahashi

光を利用した低侵襲治療・診断システムの開発

前の画像
次の画像
特徴・独自性
  • 細く柔軟な光ファイバを内視鏡に挿入して患部にレーザ光を照射する低侵襲治療や、内視鏡を用いて光学的な診断を行うための装置や技術についての研究を行っています。また、これらの治療・診断に用いるための光ファイバとして、通常のガラス光ファイバの他に、強力なレーザ光や幅広い波長の光の伝送が可能な、中空光ファイバと呼ばれる特殊な光ファイバを用いた治療・診断システムの研究開発も行っています。
実用化イメージ

医療機器メーカーをはじめ、本分野への新規参入を検討している電子機器、通信装置、および計測機器メーカーなどが連携先として考えられます。

研究者

大学院医工学研究科 医工学専攻 医療機器創生医工学講座(医用光工学分野)

松浦 祐司  

Yuji Matsuura

システム変革を鑑みた半導体材料から素子応用に関する 研究開発

前の画像
次の画像
特徴・独自性
  • (1)光通信用半導体レーザ:1981年、通信波長1.55μmでの単一縦モードでの室温連続発振。ファイバ当たりの伝送容量を25千倍の10Tb/sに増大。(2)窒化物半導体青色LED:InGaAlN提案(1987年)、発光材料InGaN単結晶薄膜成長(1989年)。本技術は市販の青色LED作製の標準技術。高周波・高出力トランジスタ:逆HEMT作製。車用トランジスタ実現のためGaN基板開発中。
実用化イメージ

光通信用分布帰還型レーザ作製技術:サブミクロン周期構造作製、レーザの作製プロセス・素子評価・シミュレーション/窒化物半導体関連技術:有機金属気相成長、結晶評価、発光素子‧太陽電池‧電子素子の作製と評価

研究者

未来科学技術共同研究センター 開発研究部 窒化物半導体の結晶成長と光デバイス・電子デバイスの研究

松岡 隆志  

Takashi Matsuoka

N極性制御を利用した、より安価、高品質なGaN自立基板

概要

窒化物半導体自立基板作製方法
https://www.t-technoarch.co.jp/data/anken/T14-121.pdf
本発明は、高品質な窒化物半導体自立基板をより安価に作製する技術に関する。本発明では、種結晶にSCAlMgO4基板を用いることも含む。本基板上の窒化物半導体の転位密度が低くなる。結晶極性の制御によって、窒化物半導体の膜厚の増大とともに結晶径の拡大もできる。

従来技術との比較

従来より貫通転位密度の少ない窒化物半導体の自立基板を作製できる。さらに、土台となるScMgAlO4の劈開性を用いることによって、窒化物半導体の剥離が容易となり、基板作製コスト化も低減できる。

特徴・独自性
  • 自立基板作製に種結晶としてScAlMgO4を用いること。
  • 結晶極性としてN極性を用いることによる結晶径を拡大できること。
  • 種結晶としてScAlMgO4を持ちいて、この結晶の表面保護層としてAlNを形成する場合には、その表面の酸化後、さらに表面を窒化すること。
  • 種結晶の主表面がc面から0.4~1.2°傾斜していること。
実用化イメージ

発光ダイオードやレーザなどの光素子、および、高出力・高周波・高耐圧トランジスタの作製のために、高品質で安価な窒化物半導体自立基板を提供すること。企業へは事業化のための検証を期待する。

研究者

未来科学技術共同研究センター 開発研究部 窒化物半導体の結晶成長と光デバイス・電子デバイスの研究

松岡 隆志  

Takashi Matsuoka

環境に優しい窒化物半導体から構成される高効率太陽電池

概要

結晶極性を利用した高効率太陽電池
https://www.t-technoarch.co.jp/data/anken/T12-157.pdf
結晶の極性(薄膜結晶成長方向に沿った構成原子の配列順)を制御した成長技術、特に窒素(N)極性成長技術を用いたN極性太陽電池であり、Ga極性太陽電池と比較して、フォトキャリの引き出し効率が8倍以上大きくなることを実験検証済である。

従来技術との比較

光吸収電流に関しては、N極性型窒化物半導体太陽電池は、従来のGa極性窒化物半導体太陽電池に比べて、8倍程大きい。

特徴・独自性
  • 従来の窒化物半導体素子の結晶極性は、太陽電池も含めて、すべてGa極性であった。本発明の窒化物半導体太陽電池はN極性である。
  • 結晶極性にN極を用いることによって、光吸収電流は8倍大きくなる。その結果、高効率の太陽電池を窒化物半導体を用いて作製できる。
実用化イメージ

窒化物半導体の温度に依存しにくい特性を活かし、温度変化の激しい環境においても安定して動作する太陽電池の研究開発を進めたい。
企業とは、素子構造の最適化やN極性太陽電池の特性定量的化を共に行いたい。

研究者

未来科学技術共同研究センター 開発研究部 窒化物半導体の結晶成長と光デバイス・電子デバイスの研究

松岡 隆志  

Takashi Matsuoka

非接触エネルギー伝送を用いた産業機器・医療機器の開発

前の画像
次の画像
特徴・独自性
  • 独自技術を用いた非接触電力伝送システムを中心に数ワットから数十キロワットクラスの幅広い開発を行っている。産業機器ではモバイル機器を始めEV や工場内搬送装置に至る幅広い対応が可能である。医療機器では人工心臓への電力伝送や、主に四肢不自由者の運動機能再建を目指す機能的電気刺激装置(FES)の開発、がん治療として体内の温度計測を必要としない小型埋込素子を用いたハイパーサーミアの開発を行っている。
実用化イメージ

産業・医療用途共に、独自の信号伝送システムも併せて開発を行い実用化している。

研究者

災害科学国際研究所 レジリエントEICT研究推進部門 レジリエントEICT

松木 英敏  

Hidetoshi Matsuki

サプライチェーンを通じた資源利用と関連するリスクの可視化

前の画像
次の画像
特徴・独自性
  • マテリアルフロー解析、産業連関モデルに基づくサプライチェーン解析により資源の流れを明らかにし、資源採掘・精錬・輸送に関わるサプライチェーンの各拠点、経路の各属性別リスクデータとの融合を行い、我が国の科学技術イノベーション政策、資源安全保障に寄与する知を生み出します。
実用化イメージ

これまで共同研究・連携を行った経験があるのは鉄鋼産業、自動車産業です。省資源化技術導入による環境影響評価を行いたい行政機関や事業者との連携も積極的に行っていきたいと思っております。

研究者

大学院環境科学研究科 先進社会環境学専攻 環境政策学講座(環境・エネルギー経済学分野)

松八重 一代  

Kazuyo Matsubae

実験心理学の原理から人間の行動を理解する

前の画像
次の画像
特徴・独自性
  • 人の行動情報をセンシングし、人の意図や心身状態、人間関係を読み取ろうとする動きが進んでいます。このような状況を踏まえ、本研究室では、視線計測技術などを用いた実験心理学的手法によって人の身体行動に内在する心の理解に関する認知機能の解明に取り組んでいます。
実用化イメージ

私たちは、日常の中で、極めて効率的な身体行動を様々な状況で柔軟かつ容易に実現していますが、なぜこのようなことが可能なのでしょうか? この問題は、認知科学、神経科学、リハビリテーション医学、スポーツ科学、ロボット工学などの様々な研究分野で取り組まれている重要な問題の一つです。 効率的な身体行動の実現には、目に見える「物理的な身体」ではなく、目に見えない「心の中の身体」(自己身体の気づき)が深く関与することを見出しており、「心の中の身体」のメカニズムと機能的役割の解明を進めています。

研究者

大学院情報科学研究科 応用情報科学専攻 応用生命情報学講座(認知情報学分野)

松宮 一道  

Kazumichi Matsumiya

固液界面真空プロセスの開発とその応用

前の画像
次の画像
特徴・独自性
  • 様々な物質の液体状態を、高真空環境下で安定化させ、そのマイクロ/ナノレベルの成形技術や診断技術の開発,また,物性測定による新現象の発見,およびそのプロセス応用に取り組んでいる。特に、膜厚が数nmのイオン液体膜の作製や単結晶品質のSiCなどの無機薄膜の高速VLS成長、イオン液体を介した有機半導体、高分子薄膜・結晶材料のプロセスは,世界的にも類を見ない独自技術である。
実用化イメージ

wet系プロセスの利点を真空プロセスに取り入れた次世代の半導体プロセスへの応用開発、有機半導体の新しい精製技術の開発,イオン液体を介した蒸着法による再結晶が困難な有機化合物の単結晶の試作など。

研究者

大学院工学研究科 応用化学専攻 原子・分子制御工学講座

松本 祐司  

Yuji Matsumoto

メタボロミクスによる診断マーカー探索

前の画像
次の画像
特徴・独自性
  • 種々の先天性代謝異常や肝胆道系疾患によってコレステロールの恒常性が破綻すると、体液中のコレステロール代謝物プロファイルが変化し、増加した代謝物が抱合体として血液や尿中に現れる。抱合形式毎に特徴的なフラグメントパターンを活用し、LC/ESI-MS/MS を用いて、特定の抱合型代謝物を群特異的かつ網羅的に解析可能となった。この手法を用いることにより、様々な疾患の診断マーカー候補分子を効率的に探索できる。
実用化イメージ

候補分子の診断マーカーとしての有用性が検証された場合、スクリーニング検査が必要になる。抗体や酵素を用いたバイオアッセイ系の開発において企業と連携する可能性がある。

研究者

病院 薬剤部

眞野 成康  

Nariyasu Mano

自己治癒セラミックスの開発および固相変態型蓄熱材料の開発

前の画像
次の画像
特徴・独自性
  • 自己治癒セラミックスの研究を行っています。自己治癒は材料表面の傷を自発的に修復する機能で、強度信頼性の向上に寄与します。主に900-1300℃程度で使用可能な自己治癒セラミックスを開発しており、現在は400℃程度で使用可能な材料開発を進めています。
  • 上記とは別に、700℃程度で鉄系材料の固相変態を利用した蓄熱材料を開発しています。蓄熱後も固相であるため、機械的強度が必要な場所で応用が期待できます。
実用化イメージ

自己治癒材料:金属材料の代替により軽量化が期待できます。(自動車のブレーキロータやジェットエンジンタービン翼等)
蓄熱材料:鉄鋼排熱を利用した木炭製造プロセス等

研究者

大学院環境科学研究科 先端環境創成学専攻 太陽地球システム・エネルギー学講座(資源利用プロセス学分野)

丸岡 大佑  

Daisuke Maruoka

温度勾配型マイクロフローリアクタによる着火・燃焼特性の測定・評価

前の画像
次の画像
特徴・独自性
  • 多様な燃料の着火・燃焼特性を客観評価する新原理の試験法を開発・実用化した。流れ方向に温度が徐々に上昇するよう外部から温度分布制御した微小流路を用いる。燃料が温度上昇と共に低温(600K程度)から酸化剤と反応開始、反応完了(〜1300K)までの過程(通常は高速の過渡現象「着火現象」)を、温度域別に分離した定常な複数反応帯(火炎クロマトグラフィ)として安定化することに成功した。
実用化イメージ

オクタン価やセタン価推定、天然ガス成分別の反応特性解明を既達成。簡便な標準的燃焼化学反応の試験装置として、各種燃焼器開発への適用、不明燃料の着火特性解明にも応用可能である。

研究者

流体科学研究所 附属統合流動科学国際研究教育センター エネルギー動態研究分野

丸田 薫  

Kaoru Maruta

事業継続マネジメント(BCM)

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 事業継続マネジメント(BCM) は、企業や公的組織が災害、大事故、テロ、感染症などで甚大な被害を受けた際にも、重要業務を継続または早期復旧するための対応戦略である。また、この計画がBCP で、政府、経済団体等が導入・改善を積極的に推進している。当研究室では、BCM の普及策や改善策を研究しており、政府のガイドライン策定にも深く関与している。仙台で産官学の勉強会、企業との共同研究も行っている。
実用化イメージ

BCM・BCPを導入、改善しようとする企業・組織に求めに応じ助言を行うことができるほか、企業グループなどと連携した普及促進や実践的改善の取組、個別企業との共同研究が想定できる。

研究者

災害科学国際研究所 防災実践推進部門 防災社会推進分野

丸谷 浩明  

Hiroaki Maruya

原子配列の秩序性の定量的評価に基づく破壊予知と破壊制御

前の画像
次の画像
特徴・独自性
  • 原子レベルで材料の劣化損傷の発生メカニズムの解明,稼働環境における破壊を防止する方法の確立,安全安心な社会の実現への貢献のため,1)原子レベルでの材料結晶組織の分析可視化技術,2)原子レベルシミュレーションを活用した高信頼材料の設計,製造技術,3)カーボンナノマテリアルを応用した稼働機器や人体のヘルスモニタリング技術,4)レーザ光応用非破壊損傷評価技術等の開発などの研究を推進しています.
実用化イメージ

材料や構造物の破壊(狭義の破損に留まらず機能消失、性能低下も含む)メカニズム解明に基づく破壊予知と破壊制御という視点で共同研究や学術指導も積極的に推進している。

研究者

大学院工学研究科 附属先端材料強度科学研究センター 材料機能・信頼性設計評価研究部門(破壊予知と破壊制御研究分野)

三浦 英生  

Hideo Miura

ナノ粒子・クラスターのイオンモビリティ質量分析とその応用

前の画像
次の画像
特徴・独自性
  • 高真空中での分子ビーム技術を用いて、今までにない気相小集団化学種(クラスター・ナノ粒子) の質量分析、イオン移動度分析、レーザー光誘起反応、二分子衝突反応の研究を、自作の真空装置を開発して行っている。
実用化イメージ

気相の微粒子の同定や構造決定が必要な材料・環境分野、質量分析やイオンモビリティが重要なプロテオミクスが関係するバイオ関連・製薬業界など

研究者

大学院理学研究科 化学専攻 物理化学講座(理論化学研究室)

美齊津 文典  

Fuminori Misaizu

スピントロニクス材料と情報通信技術への応用

前の画像
次の画像
特徴・独自性
  • 1. マンガン系磁性材料を主とする新薄膜磁性材料の研究開発(図1)
  • 2. フェムト秒パルスレーザーに対する磁性体の超高速応答の基礎研究(図2)
実用化イメージ

次のような、電子・通信産業と産学連携の可能性があります。
○ 新材料を用いたトンネル磁気抵抗素子の、大容量磁気メモリ、磁気ストレージ、ミリ波〜テラヘルツ波通信素子への応用。
○ フェムト秒パルス光を用いたテラヘルツ波輻射への応用。
○ パルス光を用いた磁気スピン波の制御と論理デバイスへの応用。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

水上 成美  

Shigemi Mizukami

生体機能の可視化および制御技術の開発

概要

従来技術との比較

特徴・独自性
  • 生体分子の機能を正しく理解するには他の生体分子との相互作用が保たれた状態、すなわち生きた状態で観察することが重要です。そこで、有機化学および蛋白質科学の双方からのアプローチにより新たな機能性分子を開発し、生体分子の可視化および光を用いた機能制御に取り組んでいます。特に、オルガネラ内の分子やイオン濃度の定量や、蛋白質機能を光操作するケージド化合物あるいはフォトスイッチ化合物の開発に実績があります。
実用化イメージ

研究者

多元物質科学研究所 有機・生命科学研究部門 細胞機能分子化学研究分野

水上 進  

Shin Mizukami

レーザファブリケーションによる高機能バイオインタフェースの創成

前の画像
次の画像
特徴・独自性
  • 本研究では、レーザ照射を利用して材料表面に様々な機能を付与する手法の開発を行っている。とくにレーザを材料に照射した際に生じる現象を、シミュレーションおよび実験的な手法を用いて明らかにし、新しい機能性インターフェースの創成を行っている。
  • 本研究成果は、生体・医療用デバイスへの応用を始めとし、幅広い分野への波及効果が期待できる。
  • ■ 高機能バイオインターフェースの創成
  • 人工臓器や人工血管、あるいはバイオインプラントなどに利用される材料は、生体組織や細胞に対する高い親和性が求められる。そこで本研究室では、レーザ照射による表面創成プロセスにより「生体に優しい」表面づくりにも取り組んでいる。
  • 本手法により、チタン系材料に対して生体に活性な機能を付与することに成功している。このような機能を持つ材料を生体内に埋入すると、表面にハイドロキシアパタイト(骨や歯の主成分)が自然に析出する。この方法を利用すれば骨との固着性に格段に優れるインプラントを作製することが可能であり、人工関節や歯科インプラントなどへの応用が期待できる。
  • 本研究ではこのような手法を駆使し、バイオ分野への新たなブレークスルーを目指す。
実用化イメージ

研究者

グリーン未来創造機構 グリーンクロステック研究センター

水谷 正義  

Masayoshi Mizutani

対話型教授システムIMPRESSIONによる次世代教育環境

前の画像
次の画像
特徴・独自性
  • IMPRESSION は、対面教育、遠隔教育の双方において各種マルチメディア教材を活用した対話型インストラクションのための教授システムです。このIMPRESSION では、講師と学習者との対話に着目した成長型教授設計プロセスモデルであるダブルループモデルに基づき、実際の学習者に応じたインストラクションの設計、実施、評価、改善を可能とし、これにより、効果的で魅力的な教育を実現します。
実用化イメージ

一般的な学校教育現場における高度なメディア活用教育のほか、遠隔地の社員を対象とした研修等、各種教育の実施環境、および、そのためのデザインツールとして活用することができます。

研究者

データ駆動科学・AI教育研究センター デジタル教育研究部門

三石 大  

Takashi Mitsuishi

  • 1
  • 2