"I" Keywords - 65 Result(s)

 I

[iPS cell]

DIFFERENTIATION INDUCING METHOD ENABLING TUMORIGENESIS OF IPS CELLS TO BE SUPPRESSED

特徴・独自性
  • The present invention relates to a technique for differentiating iPS cells into target differentiated cells while suppressing tumorigenesis in the iPS cells. In use of a statin and a differentiation inducer, iPS cells are differentiated into target differentiated cells, whereby iPS cells can be differentiated into differentiated cells in which tumorigenesis is suppressed.
実用化イメージ

Researchers

Graduate School of Dentistry

Hiroshi Egusa

Method for efficient production of induced pluripotent stem cells utilizing cells derived from oral mucosa

特徴・独自性
  • We provide a technique which can produce induced pluripotent stem (iPS) cells with high establishment efficiency and imposes lower burden on patients. iPS cells can be produced efficiently with significantly increased establishment efficiency by selecting cells derived from the oral mucosa and introducing a reprogramming factor, which can induce the reprogramming of the cells into pluripotent stem cells, into the cells.
実用化イメージ

Researchers

Graduate School of Dentistry

Hiroshi Egusa

[Ir alloy]

Precipitation Hardened Co-based Alloy

NEXT
PREV
特徴・独自性
  • The high-temperature strength in Co-based alloys is inferior to that in Ni-based superalloys due to no available ’ phase for strengthening Co-based alloys. We have found a new intermetallic compound Co3(Al,W) ’ phase, and /’ Co-Al-W-based wrought and cast alloys show excellent high-temperature strength. The /’ Ir-Al-W-based alloys are also available for high-temperature uses at over 1100 °C. The Co-based alloys also have good wear resistance. For example, friction stir welding (FSW) of high-softening-temperature materials such as steels and titanium alloys is possible using a Co-based alloy tool. We hope to conduct collaborative research with willing company for a practical application of the Co- or Ir-based alloys for high-temperature uses including FSW applications.
実用化イメージ

Researchers

Graduate School of Engineering

Toshihiro Omori

[Ischemic disease]

Development of PHD-Targeted Drug for Ischemic Injury

NEXT
PREV
特徴・独自性
  • All the living organisms generate energy from molecular oxygen to maintain their own lives. Once the concentration of oxygen falls down, life activity gets severely hampered and it could sometimes cause death. Typical examples that are related to local hypoxia are ischemic heart disease, stroke and kidney disease.
  • We focus on the function of prolyl hydroxylase (PHD) as a sensor to detect the hypoxia, and we are developing drugs to treat ischemic injury by controlling hypoxia.
実用化イメージ

Currently, we have several compounds that inhibit the PHD. We want to commercialize in conjunction with pharmaceutical companies in Japan and overseas, advancing our non-clinical studies for clinical development.

Researchers

Graduate School of Medicine

Toshio Miyata

[islet transplantation]

Establishment of Minimally Invasive Cell Therapy for Diabetes by Introducing Interdisciplinary Approach

NEXT
PREV
特徴・独自性
  • The islet transplantation is the ideal "minimum invasive" cell transplant therapy for the severe diabetic patients who are suffering with controlling the blood glucose levels. In this project, we try to have a cross organization among the advanced technologies in islet transplantation as one of the typical cases. Our chief objective is to construct the center of medical cell-engineering therapy as successful examples in Tohoku University. We are convinced that technical innovation through this project could contribute much more to the activation of medical industry based upon cell therapy.
実用化イメージ

We have already established effective academic-industrial alliances regarding our several projects including a development of new type of cell-isolation enzyme. However, we are still looking for possible candidates concerning a special device for cell transplantation and medical grade-pathogen free animals.

Researchers

Graduate School of Medicine

Masafumi Goto