行のキーワード 620ワード

3Dプリンティング

レアメタルフリー高性能蓄電池の先端ナノテクノロジー

前の画像
次の画像
特徴・独自性
  • 高容量・高出力・高安全性・低コストの次世代蓄電エネルギーデバイスであるポストリチウムイオン電池を実現するために、単原子層物質グラフェン、金属硫化物ナノシート、ナノ結晶活物質、ナノ粒子、ナノ多孔材料などの新しい機能材料の開拓とデバイス応用を研究する。全固体型リチウム二次電池、マグネシウム電池、燃料電池、大容量キャパシタ、ウェアラブル電池などの高性能電極材料・デバイス創製の精密化学プロセスを研究する。
実用化イメージ

ポストリチウムイオン電池および革新的エネルギー材料開発を研究シーズとして素材産業、電池メーカー、電気自動車企業、スマートグリッドや再生可能エネルギー等の電力ビジネス企業との共同研究を積極的に推進する。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター エネルギーデバイス化学研究分野

本間 格  

Itaru Homma

サンプル有

非フッ素系PTFE粒子分散剤

概要

非フッ素系PTFE水分散剤
https://www.t-technoarch.co.jp/data/anken/T19-448.pdf

従来技術との比較

PTFE粒子を水などの溶剤に分散させるためにはフッ素系分散剤が必要であったが、PFAS規制により仕様が制限されつつある。本発明は非フッ素系PTFE粒子分散剤を提供する。

特徴・独自性
  • カテコール系接着官能基を用いてPTFEに接着する分散剤を合成
  • PTFE等の低表面エネルギー粒子を水などに良好に分散
  • PFAS規制などで使用できない分散剤の代替として有望
実用化イメージ

PTFE粒子などの低表面エネルギー粒子は撥水剤やバインダーなどとして広く使用されている。本用途におけるPFASフリー化に貢献する。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

残留応力

キャビテーションピーニング−泡で叩いて金属材料を強くする−

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 流体機械に致命的な損傷を与えるキャビテーション衝撃力を、逆転発想的に、金属材料の疲労強度向上に活用するキャビテーションピーニングを開発しました。また、表面層の亀裂発生・亀裂進展を評価するために荷重制御型平面曲げ式疲労試験機を開発し、キャビテーションピーニングにより下限界応力拡大係数範囲が1.9倍に向上することを実証しました。また、キャビテーションピーニングによる水素脆化抑止も実証しています。
実用化イメージ

用途に応じた複数のキャビテーションピーニング装置がありますので、キャビテーションピーニングの実用化に向けた共同研究を実施する企業を求めています。

研究者

大学院工学研究科 ファインメカニクス専攻 材料メカニクス講座(知的計測評価学分野)

祖山 均  

Hitoshi Soyama

CT

X線位相イメージングによる高感度非破壊検査装置の開発

前の画像
次の画像
特徴・独自性
  • 通常のX線透視撮影は軽元素からなる高分子材料などの低密度材料に対して明瞭なコントラストを生成しない。しかし、X線が物質を透過するとき、わずかに屈折により曲げられることを検出・画像化することで、そのような物質に対する感度が大幅に改善される。X線透過格子を用いるX線Talbot 干渉計あるいはX線Talbot-Lau干渉計によりこれが実験室で実施できるようになった。高感度三次元観察を可能とするX線位相CT も実現している。
実用化イメージ

工業製品検査や保安目的のX線非破壊検査を、従来法では適応が難しかった対象に拡張できる。X線マイクロCT装置への位相コントラストモード付加、生産ラインでのX線検査装置の高度化などが開発目標となる。

研究者

多元物質科学研究所 計測研究部門 量子ビーム計測研究分野

百生 敦  

Atsushi Momose

X線位相イメージングによる高感度医用診断装置の開発

前の画像
次の画像
特徴・独自性
  • 通常のX線透視撮影は生体軟組織などのX線をあまり減衰させない構造に対して明瞭なコントラストを生成しない。X線が物質を透過するとき、わずかに屈折により曲げられる。通常のX線透視撮影では、X線は直進していると近似しているが、この屈折を検出・画像化することで、軟組織に対する感度が大幅に改善される。このような撮影を、X線透過格子を用いるX線Talbot 干渉計あるいはX線Talbot-Lau干渉計により実現している。
実用化イメージ

すでに、軟骨描出能を使ったリウマチ診断、および、乳がん診断(マンモグラフィ)への適用を目的とした医用機器開発を進めている。他の医用用途が開拓できれば、新たな産学連携が構築できると期待している。

研究者

多元物質科学研究所 計測研究部門 量子ビーム計測研究分野

百生 敦  

Atsushi Momose

ミリ秒オーダーX線トモグラフィの開発

前の画像
次の画像
特徴・独自性
  • 高感度なX線イメージング法と、強力な白色放射光により、世界最速となるミリ秒オーダー撮影時間(空間分解能約20 μm)で有機材料のX線CT(コンピュータトモグラフィ)に成功しています。軽元素から構成される試料のハイスループット3次元可視化や、ミリ秒時間分解能の4次元(3 次元+時間)トモグラフィへの応用研究を展開しています。
実用化イメージ

材料破壊、接着界面破壊、動的バイオミメティクス、省エネマイクロマシン、電池、インテリジェント材料などのミリ秒時間分解能3D観察が可能で、様々な新しい産学連携の可能性を期待しています。

研究者

国際放射光イノベーション・スマート研究センター 横幹研究部門 次世代検出法スマートラボ

矢代 航  

Wataru Yashiro

CMOSデバイス

高精度デバイスプロセス技術と新規イメージセンサ開発

前の画像
次の画像
特徴・独自性
  • クリーンルーム・ユーティリティのレベルから、材料、装置、プロセス、デバイス、回路、実装、信号処理、計測・評価、信頼性に至るまでの研究に総合的に取り組みつつ、それらを基盤として、イメージセンサの極限性能の追及を行っています。
  • 今までに、100 万個を超えるトランジスタ性能の高精度高速計測技術(2004 年)、明暗差5 ケタの単露光撮影を可能とした広ダイナミックレンジCMOS イメージセンサ(2008 年)、毎秒1000 万コマの撮影が行える高速CMOS イメージセンサ(2012 年)などの実用化に成功しています。
実用化イメージ

デバイスメーカの量産ラインと相互乗り入れ可能な清浄度を有する200mmウェーハのシリコンデバイス流動が行えます。また、現有するクリーンルーム施設設備を利用した要素プロセス検討、高度な各種分析評価が行えます。新規イメージセンサの開発に取り組むことができます。

研究者

未来科学技術共同研究センター 開発研究部 クリーンルーム整備共用化の推進と半導体製造技術・センサ技術の開発

須川 成利  

Shigetoshi Sugawa

シェーグレン症候群

重度の自己免疫性関節炎、血管炎、唾液腺炎を自然発症する疾患モデルマウス、McH-lpr/lpr-RA1マウスの開発

前の画像
次の画像
特徴・独自性
  • McH/lpr-RA1マウスは、MRL/lprとC3H/lprマウスに由来するリコンビナントコンジェニックマウスで、関節リウマチ、結節性多発動脈炎、シェーグレン症候群に類似した骨破壊や関節強直、血管炎、唾液腺炎を高頻度に発症します。一方McH/lpr-RA1は、MRL/lprにみられるような全身のリンパ節腫脹や重篤な腎炎の発症はみられませんので、繁殖・維持が容易で長期の薬剤投与実験も可能です。
実用化イメージ

膠原病の診断・治療薬の開発。免疫チェックポイント阻害剤による免疫学的有害事象の発症メカニズムの解明と発症予防薬の開発等に応用可能で、製薬会社、検査試薬会社等との産学連携が可能である。

研究者

大学院医工学研究科 医工学専攻 治療医工学講座(腫瘍医工学分野)

小玉 哲也  

Tetsuya KODAMA

ジェネリック

実践的かつ経営的処方を支援する薬品決定支援システムおよびプログラムの開発

前の画像
次の画像
特徴・独自性
  • 糖尿病における実地医療現場で実践的かつ経営的処方術を実施するための薬剤決定支援システムおよび薬剤決定支援プログラムを発明した(特許第4176438号)。
  • 我が国の保健医療現場における医師の処方は1 剤205 円以内の6 剤投薬と規定されている。この制限を越えた投薬を施行した場合には薬価請求額の10% が減額されるしくみになっている。但し、服用法が同じで、かつ205 円以内に収まる複数の薬剤は1 剤とみなされ、6剤を越えた処方がなされても6 剤以下の処方と扱われる。
  • 一方、我が国の高齢化社会では加齢に伴い糖尿病患者が増加している。糖尿病合併症を含めその治療薬を1 人の内科医が処方すると容易に6 剤投薬を超えてしまう。そこで医療経営的にジェネリック(後発品)の使用が不可欠となる。しかし、医師が先発品と後発品の医薬情報を薬価まで熟知し瞬時に処方を行うことは極めて難しい。本発明は主に糖尿病診療における内科医の処方技術を実践的かつ経営的に改善するものである。
  • 本発明(特許)を活用して事業化を企てる企業または出資者・開発支援者を求めている。
  • ソフトウエアのサンプルあり。
実用化イメージ

研究者

サイクロトロン・ラジオアイソトープセンター 糖尿病制御学寄附研究部門

野々垣 勝則  

Katsunori Nonogaki

ジオール

二酸化炭素とジオールからの直接ポリマー合成用触媒プロセスの開発

前の画像
次の画像
特徴・独自性
  • 二酸化炭素とジオールから一段階かつ触媒的ポリカーボネート合成に有効な酸化セリウムと2−シアノピリジンからなる触媒系を見出した。酸化セリウムは二酸化炭素及びアルコールの活性化に有効であり、2−シアノピリジンはポリカーボネート生成により生じる水を水和反応により効率的に除去し、平衡を生成物側に有利にすることで反応を促進する。さらに、バイオマスからのジオール合成技術を組み合わせることで、グリーンなポリカーボネートを合成可能になる。
実用化イメージ

本技術は二酸化炭素の直接変換に有効であり、安価で安全な二酸化炭素の有効利用及び排出抑制に寄与できる触媒技術である。二酸化炭素の濃縮技術と組み合わせることで、大きな効果が期待される。

研究者

大学院工学研究科 応用化学専攻 環境資源化学講座(エネルギー資源化学分野)

冨重 圭一  

Keiichi Tomishige

視覚

人間の視覚情報処理機能の解明とのインターフェース技術への応用

前の画像
次の画像
特徴・独自性
  • 人間の視覚処理について、運動視、立体視、色覚を中心とした受動的、初期レベルの機能から、注意、視線制御など能動過程、触覚など他の感覚との関連機能および無意識学習の特性など連合的機能まで、心理物理学、脳活動計測、計算機モデルを用いて総合的に研究している。
実用化イメージ

効果的映像表示装置や映像コンテンツの設計の提案、視機能に基づく画像や視環境の評価、視覚的注意モデルによる視線移動の予測などの応用的展開を試行している。

研究者

電気通信研究所 人間・生体情報システム研究部門 高次視覚情報システム研究室

塩入 諭  

Satoshi Shioiri

視覚情報処理

脳型計算機ハードウェアの開発と視覚情報処理への応用

前の画像
次の画像
特徴・独自性
  • 生体の優れた視覚機能を模擬した視覚情報処理システムの実現に向けて、運動視に基づく空間認識の神経回路網モデルの構築とその集積回路化について研究している。このモデルでは、対象物の移動方向と速度を知らなくても、到達時間・平面方位・最短距離を検出できる。このモデルを実時間で実行するために試作した集積回路は電力効率に優れ、従来の計算機の100 分の1 以下の消費電力で動作する。
実用化イメージ

近年、インフラ点検・農業・物流の効率化を目的としたドローンの需要が急速に伸びている。本研究成果を応用することで、周囲の空間を正確に把握して衝突することなく自律的に飛行するドローンの実現が見込まれる。

研究者

電気通信研究所 計算システム基盤研究部門 ナノ集積デバイス・システム研究室

佐藤 茂雄  

Shigeo Sato

人間の視覚情報処理機能の解明とのインターフェース技術への応用

前の画像
次の画像
特徴・独自性
  • 人間の視覚処理について、運動視、立体視、色覚を中心とした受動的、初期レベルの機能から、注意、視線制御など能動過程、触覚など他の感覚との関連機能および無意識学習の特性など連合的機能まで、心理物理学、脳活動計測、計算機モデルを用いて総合的に研究している。
実用化イメージ

効果的映像表示装置や映像コンテンツの設計の提案、視機能に基づく画像や視環境の評価、視覚的注意モデルによる視線移動の予測などの応用的展開を試行している。

研究者

電気通信研究所 人間・生体情報システム研究部門 高次視覚情報システム研究室

塩入 諭  

Satoshi Shioiri

自家発電

振動制御

前の画像
次の画像
特徴・独自性
  • 振動から取り出したエネルギーを使う「自家発電」による振動制御なので、「セルフパワード振動制御」と呼ばれます。回収エネルギーは余りますから、広範囲な用途に使えます。例えば、無電源通信・振動発電・振動エネルギーハーベスティング・ヘルスモニタリングの実施なども可能です。宇宙工学からスピンオフした技術です。高性能な振動発電としても使えます。
実用化イメージ

振動低減・ヘルスモニタリング・無電源無線通信
・ 工場の定常的な振動(回転機械・壁)
・ 電源コードが届かない回転体
・ 人から離れた橋梁・高架下・インフラ全般
・ 低周波騒音対策(防音壁など)

研究者

大学院工学研究科 航空宇宙工学専攻 宇宙システム講座(宇宙構造物工学分野)

槙原 幹十朗  

Kanjuro Makihara

歯科補綴装置

CAD/CAM応用に向けた歯列形態と咬合関係の高精度計測

前の画像
次の画像
特徴・独自性
  • CAD/CAMによる歯科補綴装置の調製が実現されて久しいが、寸法精度は無調整で口腔に装着可能な程度に遠く及ばない。印象採得時の開口により顎骨や歯列が変形し、咬合関係に関するCADデータの精度が低下するためである。本技術は咬頭嵌合位のチェックバイト形状を用いて個々の歯冠形態を再配置し、咬合時の歯列形態や咬合状態を再現するもので、補綴装置が無調整で装着できる精度(0.04mm)を実現した。
実用化イメージ

本法独自のチェックバイト法を現行の精密印象法もしくは光学印象法と併用するもので、種々の商用CADシステムに容易に応用可能である。高精度商用システム開発に向け、歯科関連企業との連携を希望する。

研究者

大学院歯学研究科 歯科学専攻 リハビリテーション歯学講座(加齢歯科学分野)

服部 佳功  

Yoshinori Hattori

歯科用磁性アタッチメント

窒素固溶による磁気シールド材料を用いたニッケルフリー歯科用磁性アタッチメントの開発

前の画像
次の画像
特徴・独自性
  • 義歯やインプラントの上部構造などを維持する歯科用磁性アタッチメントでは、磁気回路により吸引力を増強するため、Ni を含む非磁性の磁気シール材料が用いられている。本研究では、磁性ステンレス鋼にN を周囲から固溶させて表面のみを非磁性化し、Ni を全く含まない磁気回路の形成と製造工程の低減を可能にする。このN 固溶法により、Niを全く含まず安全性の高い閉磁路型の歯科用磁性アタッチメントの製造が期待できる。
実用化イメージ

Niを全く含まない歯科用磁性アタッチメントは、より安全性の高い維持装置を実現し、義歯に限らず脱着が容易な歯科用インプラントやエピテーゼなどの用途で医科及び歯科医療への応用が期待できる。

研究者

大学院歯学研究科 歯科学専攻 リハビリテーション歯学講座(歯科生体材料学分野)

髙田 雄京  

Yukyo Takada

磁気

スピン制御レーザー

前の画像
次の画像
特徴・独自性
  • Qスイッチという光学デバイスは、高安定・高出力で知られる固体レーザーのパワーを著しく増大することができます。現在は、電気光学効果あるいは音響光学効果を用いたQスイッチが主流ですが、磁気光学効果を用いても、Qスイッチができることを、我々は見出しました。実際に、磁気光学材料を使って、Qスイッチを作製し、「スピン制御レーザー」という名前で、デバイス化しています。
実用化イメージ

膜型のQスイッチは、他にありません。磁性膜を使うことで初めて実現されました。固体レーザーのパワーを飛躍的に増大できるものであり、現在のハイパワーなレーザーを、小型化できるデバイスと言えます。

研究者

電気通信研究所 人間・生体情報システム研究部門 生体電磁情報研究室

後藤 太一  

Taichi Goto

磁歪(磁気ひずみ)

磁気応用技術と磁性材料

前の画像
次の画像
特徴・独自性
  • 磁気工学を基礎とした材料開発ならびに応用技術を研究している。特に磁気の特徴であるワイヤレスを生かした新しいセンサやアクチュエータの開発を、最適な特性を有する材料の開発も含めて行っている。これまでにカプセル内視鏡の駆動技術や内視鏡手術支援用アクチュエータ、補助人工心臓用ワイヤレス駆動ポンプなど医用応用技術や、磁界センサやひずみセンサなど世界最高レベルの感度のセンシング技術、バッテリーレスワイヤレスの温度計測技術、位置検出(モーションキャプチャ)技術などの開発を行ってきた。また材料単独では、損失が極めて低い電磁鋼板の実現や、電気化学的手法を用いてナノスケールで構造を制御した磁性材料(陽極酸化磁性被膜材料)の開発等を行ってきている。
実用化イメージ

上記項目に興味のある企業・団体に対する技術指導・共同研究は随時受け付けている。加えて、磁気に関連する技術に関する広く一般的な技術指導の実績も数多く行っている。

研究者

電気通信研究所 人間・生体情報システム研究部門 生体電磁情報研究室

石山 和志  

Kazushi Ishiyama

磁気アクチュエータ

磁気応用技術と磁性材料

前の画像
次の画像
特徴・独自性
  • 磁気工学を基礎とした材料開発ならびに応用技術を研究している。特に磁気の特徴であるワイヤレスを生かした新しいセンサやアクチュエータの開発を、最適な特性を有する材料の開発も含めて行っている。これまでにカプセル内視鏡の駆動技術や内視鏡手術支援用アクチュエータ、補助人工心臓用ワイヤレス駆動ポンプなど医用応用技術や、磁界センサやひずみセンサなど世界最高レベルの感度のセンシング技術、バッテリーレスワイヤレスの温度計測技術、位置検出(モーションキャプチャ)技術などの開発を行ってきた。また材料単独では、損失が極めて低い電磁鋼板の実現や、電気化学的手法を用いてナノスケールで構造を制御した磁性材料(陽極酸化磁性被膜材料)の開発等を行ってきている。
実用化イメージ

上記項目に興味のある企業・団体に対する技術指導・共同研究は随時受け付けている。加えて、磁気に関連する技術に関する広く一般的な技術指導の実績も数多く行っている。

研究者

電気通信研究所 人間・生体情報システム研究部門 生体電磁情報研究室

石山 和志  

Kazushi Ishiyama

磁気異方性

磁気応用技術と磁性材料

前の画像
次の画像
特徴・独自性
  • 磁気工学を基礎とした材料開発ならびに応用技術を研究している。特に磁気の特徴であるワイヤレスを生かした新しいセンサやアクチュエータの開発を、最適な特性を有する材料の開発も含めて行っている。これまでにカプセル内視鏡の駆動技術や内視鏡手術支援用アクチュエータ、補助人工心臓用ワイヤレス駆動ポンプなど医用応用技術や、磁界センサやひずみセンサなど世界最高レベルの感度のセンシング技術、バッテリーレスワイヤレスの温度計測技術、位置検出(モーションキャプチャ)技術などの開発を行ってきた。また材料単独では、損失が極めて低い電磁鋼板の実現や、電気化学的手法を用いてナノスケールで構造を制御した磁性材料(陽極酸化磁性被膜材料)の開発等を行ってきている。
実用化イメージ

上記項目に興味のある企業・団体に対する技術指導・共同研究は随時受け付けている。加えて、磁気に関連する技術に関する広く一般的な技術指導の実績も数多く行っている。

研究者

電気通信研究所 人間・生体情報システム研究部門 生体電磁情報研究室

石山 和志  

Kazushi Ishiyama