行のキーワード 98ワード

無毒性

毒性のある遷移金属を含まないカラフルな酸化チタン顔料

概要

ニ酸化チタン着色粒子
https://www.t-technoarch.co.jp/data/anken/T19-849.pdf

従来技術との比較

遷移金属化合物は多彩な色を示すことで知られている。これまで、遷移金属イオンのドープにより、白色の酸化チタンを着色させることは可能であるものの、遷移金属に由来する生体毒性を回避することが難しい。

特徴・独自性
  • 本発明では、遷移金属を含まず、白色、黄色、赤色、グレー、緑色、紫色、黒色、肌色等、様々な色を有する酸化チタン無機顔料を実現した。
実用化イメージ

生体毒性が課題となる化粧品分野等での酸化チタン顔料の新規応用が期待される。

研究者

多元物質科学研究所 無機材料研究部門 環境無機材料化学研究分野

Yin Shu  

Yin Shu

メカトロニクス

安全で安心して暮らせる豊かな社会を実現するためのロボットテクノロジー

前の画像
次の画像
特徴・独自性
  • 倒壊瓦礫の数cmの隙間をぬって内部調査できる世界唯一のレスキューロボット「能動スコープカメラ」、福島原発で2〜5階を初めて調査した世界唯一のロボット「クインス」などを研究開発してきました。その技術は、トヨタ東日本との共同による氷雪環境の屋外で稼働する無人搬送車の製造ライン投入、清水建設との共同による瓦礫内調査システム「ロボ・スコープ」の開発など、さまざまな応用に展開されています。
実用化イメージ

現実の問題に対する求解を通じた教育・研究をモットーに、現段階で10 件近くの産学連携研究を進めています。特に、屋外調査、インフラ・設備点検など、ロボットによる遠隔化・自動化に特徴があります。

研究者

大学院情報科学研究科 応用情報科学専攻 応用情報技術論講座(人間-ロボット情報学分野)

田所 諭  

Satoshi Tadokoro

メカニカルアロイング

原子力・核融合材料

特徴・独自性
  • 原子力や将来の核融合炉に用いられる機能・構造材料の開発と評価に関する研究を進めている。特に、メカニカルアロイング法による分散強化合金の創製や、ナノインデンテーション法を駆使した超微小試験技術に関して独自の方法を開発している。
実用化イメージ

原子力業界や材料業界

研究者

金属材料研究所 材料設計研究部 原子力材料工学研究部門

笠田 竜太  

Ryuta Kasada

メカノケミカル法

地球環境保全に貢献する粉体工学の創成

前の画像
次の画像
特徴・独自性
  • 粉体は私たちの生活に欠かすことのできない固体の存在形態であり、食品や化粧品、薬品、セラミックス、鉱工業等、様々な産業分野で用いられている。粉体を原料とする製品の性質や特性はその化学組成だけではなく、材料中の粒子充填構造にも大きく依存するため、粉砕や混合などの粉体プロセスを制御することが必要である。本研究室では、粉体プロセスを自在に精緻に制御するためのツールとしてのシミュレーション法の創成を行っている。本シミュレーションによって、粉体プロセスを最適化することにより、省エネルギー化や省資源化を図っている。
実用化イメージ

シミュレーションを活用した粉砕、混合、充填などの粉体プロセスの解析・高効率化とメカノケミカル効果を積極的に活用した都市鉱山からの金属リサイクルやバイオマスからの創エネルギーに関する研究を展開している。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 機能性粉体プロセス研究分野

加納 純也  

KANO Junya

メタバイオ材料

バイオミメティック材料・自己組織化

特徴・独自性
  • 当研究室では、㈰生物から得られたヒント(材料デザイン)を基に、㈪ナノ材料や機能性高分子などの合成物を、㈫自己組織化や自己集合という低エネルギープロセスで形作ることで、生物に学び(Biomimetic)、生物と融合し(Biohybrid)、最終的には人工材料と生物デザインにより生物を超える(Metabio)材料の作製を目指しています。
実用化イメージ

細胞培養・分離・イムノアッセイ等のバイオ分野、構造材料・接着材料等の高分子分野、ナノ粒子等のナノ材料分野、燃料電池・金属空気電池等のエネルギー分野の企業との産学連携

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

メタン発酵

メタン発酵とアナモックスプロセスの応用

前の画像
次の画像
特徴・独自性
  • 嫌気性微生物系(メタン生成古細菌とアナモックス細菌)と機能性材料(分離膜、担体)の融合利用により、有機性排水・廃棄物の処理に適した省エネルギー・低炭素型かつエネルギー生産ができる高効率的処理技術を確立していきたいです。図1に示すように、嫌気性膜分離反応槽と担体添加型一槽式アナモックス(ANAMMOX)ユニットを組み合わせることによって新しい排水・廃棄物処理システムを構築し、図2のような効果の実現を目指しています。
実用化イメージ

下水、産業排水、ごみ埋立処理処分場浸出水などの有機性排水処理および廃棄物系バイオマスのエネルギー資源化を目指して、環境プラントメーカーまたはバイオガス発電事業者との連携を図っていきたいです。

研究者

大学院工学研究科 土木工学専攻 水環境学講座(環境保全工学分野)

李 玉友  

Gyokuyu Ri

メタボ

実践的かつ経営的処方を支援する薬品決定支援システムおよびプログラムの開発

前の画像
次の画像
特徴・独自性
  • 糖尿病における実地医療現場で実践的かつ経営的処方術を実施するための薬剤決定支援システムおよび薬剤決定支援プログラムを発明した(特許第4176438号)。
  • 我が国の保健医療現場における医師の処方は1 剤205 円以内の6 剤投薬と規定されている。この制限を越えた投薬を施行した場合には薬価請求額の10% が減額されるしくみになっている。但し、服用法が同じで、かつ205 円以内に収まる複数の薬剤は1 剤とみなされ、6剤を越えた処方がなされても6 剤以下の処方と扱われる。
  • 一方、我が国の高齢化社会では加齢に伴い糖尿病患者が増加している。糖尿病合併症を含めその治療薬を1 人の内科医が処方すると容易に6 剤投薬を超えてしまう。そこで医療経営的にジェネリック(後発品)の使用が不可欠となる。しかし、医師が先発品と後発品の医薬情報を薬価まで熟知し瞬時に処方を行うことは極めて難しい。本発明は主に糖尿病診療における内科医の処方技術を実践的かつ経営的に改善するものである。
  • 本発明(特許)を活用して事業化を企てる企業または出資者・開発支援者を求めている。
  • ソフトウエアのサンプルあり。
実用化イメージ

研究者

サイクロトロン・ラジオアイソトープセンター 糖尿病制御学寄附研究部門

野々垣 勝則  

Katsunori Nonogaki

メタボリックシンドローム

心臓と血管の血圧反射機能を独立に定量診断することができる非侵襲診断装置

前の画像
次の画像
特徴・独自性
  • これまでに血管系の自律神経反射機能を診断する方法論は存在しなかった。我々は、心臓と血管の血圧反射機能を独立に定量診断する方法論を新しく発明した。メタボ対策などのヘルスケア産業に進展が期待される。
実用化イメージ

予防医学の機器開発、医薬品、サプリメントの効果判定、健康維持機器開発。

研究者

加齢医学研究所 非臨床試験推進センター 心臓病電子医学分野

山家 智之  

Tomoyuki Yambe

メタボロミクス

口腔バイオフィルム機能解析システム:「何がいるか?」から「何をしているか?」まで

前の画像
次の画像
特徴・独自性
  • 歯、舌、口腔粘膜には、500 種を超す膨大な数の微生物がバイオフィルムを形成し、齲蝕、歯周病、口臭などの口腔疾患、さらには歯科材料劣化の原因となります。
  • 私どもは、構成菌種や機能(代謝)をメタゲノム、メタボロミクスといったオミクス技術や最新の検出技術で解析すると共に、その多くが嫌気性菌である構成菌を生きたまま取り出し、高度嫌気性実験システムを用いて機能解析を行っています。「何がいるか?」から「何をしているか?」までを知ることで、初めてその制御(予防と治療)が可能となります。
実用化イメージ

口腔バイオフィルム性疾患(齲蝕、歯周病、口臭、誤嚥性肺炎など)のリスク診断
・ 薬剤や食材の口腔バイオフィルム機能への効果
・バイオフィルム性材料劣化の評価

研究者

大学院歯学研究科 歯科学専攻 エコロジー歯学講座(口腔生化学分野)

髙橋 信博  

Nobuhiro Takahashi

メタマテリアル

ナノスケール超微細構造を利用した超小型・高機能光デバイスの開発

前の画像
次の画像
特徴・独自性
  • ナノ構造と光の相互作用から生じる新規光学現象を利用した超小型・高機能光デバイスの研究を行っています。また、ナノ光学素子を実用化する上で顕在している問題を克服する新たな製作技術の開発も行っています。
  • 《主な研究テーマ》
  • ■ 可動メタマテリアルによる光の動的制御
  • ■ 微細周期構造を利用したカラーフィルタ
  • ■ 表面原子自己拡散を利用した超平坦化技術
  • ■ 超低損失シリコンナノフォトニクスの基礎研究
実用化イメージ

革新的光制御・センサデバイスの実現と社会実装を目指しています。「ナノフォトニクス、メタマテリアル、生物模倣光学」と「微細加工、光MEMS」の融合による光操作の未来技術と応用展開について研究しています。

研究者

大学院工学研究科 ロボティクス専攻 ナノシステム講座(情報ナノシステム学分野)

金森 義明  

Yoshiaki Kanamori

メタン

バイオマスエネルギー

前の画像
次の画像
特徴・独自性
  • 生ごみや糞尿のメタン発酵によるバイオマスエネルギー生産は一般的になりつつあるが、農作物生産過程で出る茎葉などの非食用部分や難分解な食品系ごみからメタンガスと回収する技術として、牛の胃液を活用したルーメン・メタン発酵の研究をしている。特に、従来前処理・後処理と2相処理が必要であったものを1相処理でもできるように工夫している。様々な原料のメタンガス生産促進について調査している。
実用化イメージ

農業系廃棄物が出るような企業や、メタン発酵を既に行なっている企業、有機性廃棄物を資源循環したいと思っている企業が良いと考える。自社で排出されるごみを有効利用することでCO2削減に貢献したい企業。

研究者

大学院農学研究科 生物生産科学専攻 動物生命科学講座(動物環境管理学分野)

多田 千佳  

Chika Tada

メタン菌カソード電極

メタン菌カソード電極を利用した微生物燃料電池

前の画像
次の画像
特徴・独自性
  • 本微生物燃料電池は、カソード電極に、これまでの方法で用いられている白金などのレアメタルではなく、微生物のメタン菌を使用することで、酸素から水を得るのではなく、二酸化炭素をエネルギーガスのメタンガスに変換しながら、電流を得る新しい電池である。 すでに、高温メタン菌カソード電極では500 mW/m2を達成した。
実用化イメージ

CO2をCH4に変換し、電流も得られるため、大量にCO2排出する場所や、高濃度有機物が蓄積した場所で持続的に電気エネルギーを獲得したい企業
現状の出力では、センサー等技術に利用できると考えている。

研究者

大学院農学研究科 生物生産科学専攻 動物生命科学講座(動物環境管理学分野)

多田 千佳  

Chika Tada

滅菌

キャビテーションによる水処理

前の画像
次の画像
特徴・独自性
  • キャビテーションを意図的に発生させた水を用いて水耕栽培を行うと、植物の活性が高まり、植物の成長を早めたり、植物の質を高めたりすることができます。また養殖などに有害なプランクトンを含む水をキャビテーションで処理すると、プランクトンを殺滅することができます。薬品を使うことなく、殺菌や滅菌などの水処理を行うことができるので、環境負荷が少ない水処理法です。低価格の設備で、かつ低ランニングコストでキャビテーションを発生できる装置を開発しているので、植物工場や養殖などの水処理に適用することが可能です。本技術を活用したい企業や団体との共同研究を希望します。あるいは本研究に関して興味のある企業へ学術指導を行うことも可能です。
実用化イメージ

研究者

大学院工学研究科 ファインメカニクス専攻 材料メカニクス講座(知的計測評価学分野)

祖山 均  

Hitoshi Soyama

大気圧プラズマ流による次世代滅菌法の開発

前の画像
次の画像
特徴・独自性
  • プラズマ滅菌は化学反応性、大気圧低温、低消費電力、低コスト、安全などの利点を有するため、既存の滅菌法の代替滅菌法として開発が進められている。本研究室では、様々な大気圧低温プラズマ流に対して、化学種生成輸送機構や滅菌効果について解明してきた。図1に示すように大腸菌にプラズマを照射すると、細胞内部よりカリウムが漏出してくる現象や細胞の高さが減少し変形することなどを明らかにしている。また、図2に示すように細管内部にプラズマを非一様に生成し、誘起される流れにより化学種を輸送して細管内壁を滅菌する手法を開発している。この技術を産業界で活用したい企業や団体との共同研究を希望する。
実用化イメージ

研究者

流体科学研究所 ナノ流動研究部門 生体ナノ反応流研究分野

佐藤 岳彦  

Takehiko Sato

MEMS

マイクロ・ナノマシニング技術を⽤いた低侵襲医療機器・ヘルスケア機器

前の画像
次の画像
特徴・独自性
  • 精密機械加工技術、MEMS(微小電気機械システム)技術などを用いて小さくとも様々な多機能を実現する新たな医療機器、ヘルスケア機器を開発しています。体内で検査治療を行う内視鏡やカテーテルを高機能化するほか、今までにない新たな医療機器を開発し、より精密で安全な検査・治療、新たな検査・治療の実現を目指します。また、体表に装着する薄く軽い高機能なデバイスにより、場所や時間の制約のない新たなヘルスケアを目指します。
実用化イメージ

基礎研究の他、実用化を目指し臨床医師および医療機器メーカーをはじめとした企業と協力して開発を進めています。また、大学から企業への橋渡しの目的で大学発ベンチャー企業を起業し共同した開発を進めています。

研究者

大学院医工学研究科 医工学専攻 医療機器創生医工学講座(ナノデバイス医工学分野)

芳賀 洋一  

Yoichi Haga

光学を基礎としたマイクロ光学デバイスの設計・製作,特に光応用のMEMSや光センサ

前の画像
次の画像
特徴・独自性
  • 光センサや光学系の設計等、光工学を基礎として、機械の運動測定やレーザーを用いた分光や非接触測定などの技術を研究している。また、半導体微細加工を利用して、集積型のマイクロ光センサ、マイクロ機械を組み合わせた光スキャナー、光通信用のスイッチなどの可変光デバイスを研究している(光MEMS)。
実用化イメージ

光学設計、光計測産業、半導体マイクロマシニングおよびMEMS などに関連した産業など。

研究者

未来科学技術共同研究センター 開発研究部 安全・安心マイクロシステムの研究開発

羽根 一博  

Kazuhiro Hane

試作コインランドリ −MEMSを中心とする半導体試作共用設備−

前の画像
次の画像
前の動画
次の動画
概要

4 インチ、6インチ、一部8インチのMEMSを中心とした半導体試作開発のための共用設備で、必要な装置を必要なときに時間単位でお使いいただけます。東北大学に蓄積された関連ノウハウが利用可能で、スタッフが試作を最大限支援します。東北大学西澤潤一記念研究センターの2 階スーパークリーンルームのうち、約1,200m2を主に利用しています。装置、料金については、ホームページをご覧ください。

従来技術との比較

経験豊富な10人以上の技術スタッフが支援します。エッチング、成膜などの各プロセスの標準的な加工条件を提供していますので、ご要望に応じた試作がすぐに開始できます。シリコン以外の様々な材料にも対応します。

特徴・独自性
  • MEMS、光学素子、高周波部品などのデバイスのほか、半導体材料開発などに対応します。
  • 試作前、試作途中における、デバイスやプロセスの技術相談にも対応しています。
  • デバイスの実装工程に対応する「プロトタイプラボ」も利用できます。
  • 半導体、計測器、センサなどの歴史を学んでいただける博物館もご覧いただけます。
  • 東北大学半導体テクノロジー共創体の一部として、半導体の研究開発、人材育成を推進しています。
  • 学生、企業技術者向けの半導体人材育成プログラムをオンデマンドで実施しています。
  • 文部科学省マテリアル先端リサーチインフラ(ARIM)事業のメンバーとして、設備とデータの共用に取り組んでいます。
実用化イメージ

2010年の開始以降310社以上の企業が利用しています。MEMS等のデバイスメーカーはもちろん、材料や機械部品、装置メーカーからも利用があります。これまでに約10件の実用化支援事例があります。

研究者

マイクロシステム融合研究開発センター

戸津 健太郎  

Kentaro Totsu

MEMS・マイクロマシンと微細加工技術に関する研究

前の画像
次の画像
特徴・独自性
  • 情報機器の入出力や自動車の安全のために用いられるMEMSと呼ばれるマイクロデバイス/システムの研究を行っています。集積化センサ、圧電デバイス、高周波MEMS、過酷環境センサ、マイクロエネルギーデバイス、ウェハレベルパッケージなどの研究に実績があります。リソグラフィ、エッチング、成膜、ウェハ接合、実装、各種評価のための装置を多数揃え、研究者自身が操作して研究できる開かれた実験環境を提供しています。
実用化イメージ

これまでに多くの企業から研究員を受け入れ、産学共同研究を行うとともに、スポット的に装置を利用頂くような支援も積極的に行っています。豊富な資料・データに基づき、随時、技術相談を受け付けています。

研究者

大学院工学研究科 ロボティクス専攻 ナノシステム講座(スマートシステム集積学分野)

田中 秀治  

Shuji Tanaka

高性能な小型センサ・アクチュエータの設計、製造とテスト

前の画像
次の画像
特徴・独自性
  • 金属ガラスやナノ構造などの新しい種類の材料をマイクロテクノロジと統合して、音響センサやアクチュエータ、熱電発電およびウェハレベルパッケージ等の新規デバイスの研究/ 開発を行っている。これらはマイクロ・ナノ・エレクトロ・メカニカル・システム(MEMS / NEMS)と呼ばれ、今日のスマートフォンや自動運転、ドローン等に欠かせない技術となっている。学内外のパートナーと連携して基礎的な材料/プロセス技術からパッケージングや信頼性等、産業に移転可能な実用化技術までを開発している。
実用化イメージ

マイクロシステム分野で幅広い産学連携が可能である。信頼性、歩留り等、重要な項目で産業へ技術移転が可能なレベルにプロセス、デバイス、システムの開発を最適化ができる。フラウンホーファー研究機構と協力実績があり、産学連携において幅広いプロジェクト要件への対応や複雑なシステムソリューションを提供することができる。

研究者

マイクロシステム融合研究開発センター

Froemel Joerg Eckhardt  

Froemel Joerg Eckhardt

免疫

リンパ節内投与法の開発

前の画像
次の画像
特徴・独自性
  • 1.1個の転移リンパ節の治療に必要な抗がん剤の量は全身投与量の1/1,000から1/10,000.
  • 2. 副作用はほぼ無視できる.
  • 3. 超音波ガイド下でリンパ節内に薬剤投与が可能
  • 4. 投与薬剤の溶媒に関して, 国際特許出願済み
実用化イメージ

1. 頭頸部がん, 乳がんなどにおける所属リンパ節の治療と予防的治療
2. ドラッグリポジショニング・ジェネリックによる医薬品開発を目指す製薬企業
3. 投与システムの開発を目指す医療機器メーカー

研究者

大学院医工学研究科 医工学専攻 治療医工学講座(腫瘍医工学分野)

小玉 哲也  

Tetsuya KODAMA