The intersection between the skeleton and metabolism
- Overview of Technology
Beyond the classic function of bone, bone cells have been shown to regulate whole energy metabolism through bone-derived factors (osteokines). However, much of the research done to elucidate the pathophysiology of metabolic dysfuntion uses the classical approach of studying organs obviously implicated in energy metabolism. When Looking at the importance of skeletal integrity through the lens of evolution, we find that bone served a survival function. Humans had to consistently be mobile to look for food and shelter. Furthering this logic reveals that bone and energy metabolism are entwined. Therefore, this project aims to 1. identify bone factors that are associated with metabolic conditions and 2. to bridge our knowledge of the skeletal system represented by its cell types and our understanding of energy metabolism of the organism into one integrated subject.
- Comparison with Conventional Technology
Our research project offers a transformative advantage over conventional approaches by thinking with the end in mind (i.e translational potential) . We employ a multi-omics approach that goes beyond the conventional focus on single layers of biological information that will deepen our understanding of metbaolic diseases and accelerates identifying novel biomarkers and therapeutic targets.
- Features and Uniqueness
-
- Interdisciplinary approach
- Multi-omics integration
- Translatioal potential
- Practical Application
-
Our research offers potential for early diagnostics, novel biomarkers, and personalized therapeutic approaches for conditions like diabetes, osteoporosis, and diabetic osteoporosis. Our work fosters interdisciplinary collaboration and inspires future translational research and RnD with industrial partners.
This work promotes public awareness of the importance of bone health and ultimately aims to deliver tangible societal benefits. - Keywords
Researchers
Frontier Research Institute for Interdisciplinary Sciences
Aseel Marahleh, Assistant Professor
DDS PhD