登録されている研究テーマ 408件

食品の機能性研究

特徴・独自性
  • 食品や農水産物、天然資源に由来する機能性成分について、精密な構造分析と、生体内での吸収代謝、物質運搬の制御、細胞機能の修飾、シグナル伝達の改変、遺伝子発現の調節など、分子機能の基盤的理解に向けた研究を進めている。特に細胞の老化や老化性の障害(認知症、癌、動脈硬化など)の予防に焦点をあて、食品油脂類、過酸化脂質、共役脂肪酸、ビタミンE、プラズマローゲン、カロテノイド、アミノ糖、カテキン類などの食品成分について、食品栄養学的研究を行っている。
  • 本研究に関して興味のある企業へ学術指導を行う用意がある。
実用化イメージ

研究者

未来科学技術共同研究センター 開発研究部 先端的食品バイオ研究拠点の構築

宮澤 陽夫  

Teruo Miyazawa

植物免疫の分子機構に関する研究

前の画像
次の画像
特徴・独自性
  • 植物は病原体の感染に対して自らを守る防御システムを備えている。我々の研究グループでは、その防御システムを制御する抵抗性遺伝子の単離、抵抗性発現に関わるシグナル伝達系の解析、抵抗性発現により誘導される抗菌性タンパク質などの防御関連タンパク質をコードする遺伝子群の特定を行っている。さらに、単離したそれら遺伝子をマーカーとして利用するため、転写制御領域に発光タンパク質コード領域を連結した遺伝子を形質転換した植物を作出し、病害抵抗性の誘導を可視的に検知できるシステムを構築した(写真)。
実用化イメージ

農業現場で使用されている化学農薬は、生物毒性による環境への影響や薬剤耐性菌の出現などが問題となっており、食の安全・安心や、環境と調和した持続的な食料生産体制の確立の観点からも、従来の農薬に代わる病害防除手段として、植物のもつ防御応答システムを活性化する化合物の開発が注目されている。殺虫剤・防除剤等の薬品メーカー、漢方・生薬市場、サプリメント・食品メーカー等での活用が可能。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(植物病理学分野)

高橋 英樹  

Hideki Takahashi

触覚・触感センサの開発に関する研究

前の画像
次の画像
特徴・独自性
  • 触覚・触感は、粗骨感、硬軟感、乾湿感、温冷感などの基礎感覚やその組み合わせの複合的な感覚であるが、これらの感覚は力、ひずみや温冷情報、粘性、振動などの情報で表現できると考えられる。これまで、ヒトの感覚受容器に対応させた触覚センサと触動作を模したセンサ機構を統合した能動型触覚センサシステムを開発し、種々の感性ワードや粗さ、柔らかさや温冷感の測定が可能となるシステムを実現した。また、触覚・触感はこれらの感覚に加え、その組み合わせなどもあり、メカニズムの解明は、センサの開発において重要である。本研究ではこれまで得られた基礎的な感覚やその他の感覚の関係、またその感覚取得に関連する物理情報等、触覚・触感のメカニズムを明らかにし、高機能な触覚・触感情報を可能とするセンサシステムの開発をする。
実用化イメージ

ライフサイエンスのみにとどまらず、香粧品業界や繊維等の業界の他にも一般メーカーなども対象となり、ものづくりの分野で有効である。

研究者

大学院医工学研究科 医工学専攻 社会医工学講座(医療福祉工学分野)

田中 真美  

Mami Tanaka

新型コロナウイルス治療薬・消毒薬の評価

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 感染性を有する新型コロナウイルスを使用し、新型コロナウイルスに対する新規治療薬候補の評価や開発、併せて消毒剤の評価なども行っています。さらに作用機序や耐性機序に踏み込むことも可能です。ほかにもインフルエンザウイルスから薬剤耐性菌までの同時評価が必要な場合はご相談ください。これまでに国内外製薬企業、関連企業との共同研究で、臨床薬の基礎開発から臨床応用までの経験があります。
実用化イメージ

阻害剤や消毒剤などの開発・評価において、目的の微生物だけでなく、同一施設で、条件をそろえて幅広く対応でき、効果の比較が容易です。野生型だけでなく、変異型にも対応可能です。

研究者

災害科学国際研究所 災害医学研究部門 災害感染症学分野 医学研究科・医学部・大学病院・東北メディカル・メガバンク機構(兼務)

児玉 栄一  

Eiichi Kodama

新規免疫チェックポイント分子LILRB4を応用した創薬及びLILRB4からなるがん患者の予測予後バイオマーカー

概要

免疫チェックポイント阻害剤
https://www.t-technoarch.co.jp/data/anken/T18-289_T20-3069.pdf

従来技術との比較

T細胞,抗原提示細胞を中心とした免疫チェックポイントの阻害抗体は多く開発されているが,単独での有効性は低い。本ミエロイド系細胞の免疫チェックポイントを標的とするものはユニーク。

特徴・独自性
  • ミエロイド系細胞,特にがん微小環境中に浸潤しているマクロファージやミエロイド系サプレッサー細胞上に発現するLILRB4を標的とすることで特異的リガンドであるフィブロネクチンとの結合を阻害する抗体がマウスモデルにおいてがんに著効
  • 一部の自己免疫にも有効であることがマウスモデルで示されている
  • 本抗体は,がん患者組織でLILRB4発現レベルを評価することで予後が予測でき,LILRB4免疫チェックポイント阻害抗体の適用可否を判断できるコンパニオン診断薬としても利用可能
実用化イメージ

・現行の免疫チェックポイント阻害抗体との併用や単独での適用でがんの予後を大幅に改善
・SLE治療薬
・ミクログリア上にもLILRB4が発現するため,アルツハイマー病などの神経疾患にも適用可能性

研究者

加齢医学研究所 加齢制御研究部門 遺伝子導入研究分野

高井 俊行  

Toshiyuki Takai

新規機能性結晶、シンチレータ、圧電単結晶の開発とデバイス化

前の画像
次の画像
特徴・独自性
  • 放射線や光、熱、圧力等の外部からのエネルギーと結晶との相互作用に興味を持ち、㈰化学と物理の両面からの材料設計、㈪合成プロセスの開発、㈫相互作用の評価と理解、の3 つの切り口から先駆的な機能性結晶の研究を進めています。研究室内で異分野融合を行っており、要素技術の上流から下流までを垂直統合する体制で取り組んでいます。優れた特性を持つ結晶に関しては、そのデバイス化、実機搭載にも主体的に関わる点も特徴です。
実用化イメージ

シンチレータは、核医学、セキュリティ、核融合、資源探査、宇宙物理等、に用いる放射線検出器に応用されます。高発光量、高速応答、長波長発光、高エネルギー分解能、高温域での安定性など、ユーザーのニーズに合わせた材料設計が可能です。また、ランガサイト型圧電結晶は室温近傍の温度特性と低インピーダンスである特性を利用して、振動子、発振器、音叉等への応用も考えられております。また、高温域での特性に注目し、特に、自動車の燃焼圧センサー等への応用も検討されております。

研究者

金属材料研究所 材料設計研究部 先端結晶工学研究部門

吉川 彰  

Akira Yoshikawa

new新規磁性ガーネット膜の開発

概要

磁性ガーネットの作製を行っています。磁性ガーネットは、磁性を持ったガーネット構造を持った材料のことを指します。磁性ガーネットの中でも、特に、YIG(イットリウム鉄ガーネット)のYサイトを、CeやBiといった希土類材料で置換し、磁気光学効果を増大した材料を作製しています。作製方法は、イオンビームスパッタ法を用いており、緻密な膜の作製が可能です。エピタキシャルな膜作製が可能です。

従来技術との比較

エピタキシャルに磁性ガーネットを作製するには、900度程度に、基板加熱を行いながら、成膜を行う必要があるため、専用の装置を必要とします。

特徴・独自性
  • 磁性ガーネット膜の作製が可能です。磁性ガーネットは、YIG(yttrium iron garnet, Y3Fe5O12)を基本組成とし、このYのサイトに、他の元素を置換することで、磁気光学効果が大きくなったり、高周波(スピン波)の応答が変わったりします。私は、このYサイトに、Ce、Bi、Dy、などの希土類を置換することで、大きな磁気光学効果を持つ材料を作製しています。これを用いたデバイス応用についても取り組んでいます。
  • さらに、磁気異方性を制御することが、デバイス応用上重要となりますが、これを、イオンビームスパッタ法の場合は、成膜中に、調整することが可能になるため、応用上有利です。さらに、磁気ドメインをもつ膜にしたり、磁気光学効果を大きくしたりすることが可能で、デバイスに合わせた材料の設計と作製と試作が可能です。
実用化イメージ

・磁性ガーネットを利用したデバイスプロトタイプの性能を向上し、実用化製品の開発研究。
・磁性ガーネットを利用した磁気光学あるいはスピン波に関する基礎的な共同研究。

研究者

電気通信研究所 人間・生体情報システム研究部門 生体電磁情報研究室

後藤 太一  

Taichi Goto

新規な有機強誘電体、有機半導体、有機磁性体の作製と物性評価

前の画像
次の画像
特徴・独自性
  • 有機分子の設計自由度に着目した分子集合体の多重機能の構築および無機材料とのハイブリッド化を試みている。導電性・磁性・強誘電性の観点から、分子性材料の電子−スピン構造を設計し、その集合状態を制御する事で、マルチファンクショナルな分子性材料の開発を行っている。単結晶・柔粘性結晶・液晶・ゲル・LB膜など多様な分子集合体を研究対象とし、無機クラスターや金属ナノ粒子とのハイブリッド化を試みている。本研究に関して興味のある企業へ学術指導を行う用意がある。
実用化イメージ

研究者

多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター ハイブリッド材料創製研究分野

芥川 智行  

Tomoyuki Akutagawa

新奇な量子物性を示す強相関電子物質の開発

前の画像
次の画像
特徴・独自性
  • 強相関電子系とは、クーロン斥力により強く相互作用する電子集団のことです。私たちは、物質合成と物性測定を相乗させることで、強相関電子系が示す新奇な量子物性を開拓しています。高圧合成法を含む様々な固体化学的手法を駆使することで物質を合成し、得られた試料の電気的・磁気的・熱的・光学的な物性を評価しています。さらに、極限環境や量子ビームを活用した特殊な計測も推進しています。こうした物質合成を基盤に据えた総合的な実験研究を通して、超伝導・磁性・トポロジカル秩序などの強相関量子物性を探求しています。
実用化イメージ

強相関電子系は、巨視的スケールで量子効果が現れることで、劇的な機能を示します。大きなエネルギースケールを有する遷移金属化合物は、次世代テクノロジーの基盤材料としての可能性を秘めています。

研究者

大学院理学研究科 物理学専攻 電子物理学講座(巨視的量子物性分野)

大串 研也  

Kenya Ohgushi

新規脳梗塞急性期治療薬(TMS-007)の開発

特徴・独自性
  • 現在、脳梗塞に対し唯一承認を受けている血栓溶解剤はalteplaseであるが、出血性梗塞の副作用などから、適応は厳密に制限され脳梗塞全体の5%程度にとどまっている。
  • TMS-007 は新しいプラスミノーゲンモジュレーター活性を有する低分子化合物で、血栓溶解作用のみならず、脳保護作用を併せ持つ。サルを含む複数種の脳梗塞動物モデルにおいてalteplase に勝る有効性が検証されている。我々は、TMS-007 の開発を進めている ティムスならびに東京農工大学と共同で開発を行い、早期に臨床試験段階まで育て上げ、製薬企業にライセンスを行うことを目的とする。
実用化イメージ

研究者

冨永 悌二  

Teiji Tominaga

新規ハイブリッドライス育種基盤

前の画像
次の画像
特徴・独自性
  • 両親の良いところを併せ持った多収品種をつくる究極の育種法にハイブリッド品種(一代雑種品種)を作る技術がある。ハイブリッドライスを育種する基盤として、細胞質雄性不稔性と稔性回復システムが使われる。我々は東北大学オリジナルのCW型細胞質雄性不稔性イネの利用を検討し、その分子基盤を研究している。CW細胞質はこれまで不可能であったインディカ品種の雄性不稔化を実現できるので、高い利用価値が期待できる。
実用化イメージ

ハイブリッド品種のイネは、通常の品種と比較して30%ほどの収量増が期待され、その栽培面積は世界全体の13%を占めている。コメ産業の国際化を狙った日本独自の新規ハイブリッドライス育種基盤を提供できる。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(環境適応植物工学分野)

鳥山 欽哉  

Kinya Toriyama

新規分子CAMPを標的とした分裂期細胞死誘導によるがん治療の開発

前の画像
次の画像
特徴・独自性
  • 我々は細胞分裂に関係する新規分子CAMP を発見し、この機能を抑制するとがん細胞の分裂が妨げられるだけでなく速やかに細胞死が起こることを見出した。これにより、細胞分裂期に作用する従来の抗がん剤で見られる耐性を抑えることができた。またCAMPの機能抑制による細胞死の促進は正常細胞では見られなかったことから、がん細胞特異的な薬剤耐性の少ない治療法の開発につながることが期待される。
実用化イメージ

CAMPの機能を抑制する化合物の開発は、薬剤耐性の少ない抗がん剤の創薬に結びつく可能性がある。

研究者

加齢医学研究所 腫瘍制御研究部門 分子腫瘍学研究分野

田中 耕三  

Kozo Tanaka

新奇有機半導体材料の合成と応用

特徴・独自性
  • 本研究では、外観構造が全く同じであるにも関わらず、電子の数が1つだけ違う特異な二つの分子を合成し、これらを混合することで、高い伝導性と物性制御性を兼ね備えた有機半導体材料を創製します。構造が同じ分子をドーパントとして用いるため、従来のドーピングの概念を超える高い割合での材料複合が可能と考えられます。幅広い物性を有する有機半導体の即時提供を可能とし、デバイス分野全体の飛躍的な進化を目指します。
実用化イメージ

研究者

高等研究機構学際科学フロンティア研究所 新領域創成研究部学際基盤研究分野 物質材料・エネルギー研究領域

上野 裕  

Hiroshi Ueno

人工知能を用いたタンパク質の機能設計:酵素・診断・医薬の設計アシスト

前の画像
次の画像
特徴・独自性
  • 2018年にノーベル化学賞となった進化分子工学の発展により、設計せずとも、目的機能をもつタンパク質を創りだすことが可能になってきた。しかし、アミノ酸配列が取りえる組み合わせ数(配列空間)の中から目的タンパク質を見つけだす確率は満足のいくものでない。我々は、機械学習を進化分子工学に利用することで、進化分子工学がもつ最も深刻な「配列空間問題」を解決し、確実に目的の機能へたどり着く技術を開発した。
実用化イメージ

酵素や抗体などのタンパク質の機能・特性を改善したいタンパク質をもっている製薬・診断・食品企業などの企業。特に、複数の特性を同時に向上させいタンパク質を持っている企業。

研究者

大学院工学研究科 バイオ工学専攻 生体機能化学講座(タンパク質工学分野)

梅津 光央  

Mitsuo Umetsu

新生骨を誘導する次世代バイオマテリアルの開発

前の画像
次の画像
概要

生体材料学を基盤として、骨の欠損を修復する整形外科、歯科、他の骨再生を必要とする領域の骨補填材を開発し、社会実壮を目指す研究を行っている。

従来技術との比較

骨アパタイト結晶の前駆体であるリン酸八カルシウム(OCP)の骨伝導性発見の成果に基づき、既存人工骨を上回る性能を持つ人工材料の調製に基づく骨補填材に関わる一連の技術を有し,新規骨補材を開発している。

特徴・独自性
  • 骨芽細胞分化を促すリン酸八カルシウム(OCP)の完全合成に成功し、骨芽細胞に加え骨細胞分化も促進させることを明らかにした(Suzuki O et al. Dent Mater J 39:187, 2020)。またOCP とgelatin、collagen など生体由来高分子あるいはPLGAといった合成高分子との複合体による臨床応用可能な次世代型バイオマテリアル開発への取り組みを進めている。さらにOCP自体の新生骨との置換性を高める研究を行っている(Suzuki O et al. Acta Biomater 158:1, 2023)。
実用化イメージ

整形外科領域の骨欠損修復をターゲットとし、顎顔面・口腔外科領域にも応用可能な生体材料開発を学内共同研究により進めている。新規バイオマテリアルの開発をめざす企業に対して学術指導を行う用意がある。

研究者

大学院歯学研究科 歯科学専攻 リハビリテーション歯学講座(顎口腔機能創建学分野)

鈴木 治  

Osamu Suzuki

心臓・血管系動態の高精度超音波計測

前の画像
次の画像
特徴・独自性
  • 心臓・動脈に照射し反射した超音波の解析で、従来のエコー装置で検出できない、対象物の振動や変形をミクロンオーダで数百Hz帯域(肉眼では捉えられない速い成分)まで高精度計測する方法を開発(図1)。心臓壁の動きの高精度計測でポンプ機能を司る壁伸縮特性評価、収縮のもととなる心筋興奮伝播の可視化、心臓弁開閉時に発生する微小振動伝播可視化(図2)、脈圧に伴う動脈壁厚み変化計測による壁硬さ評価(図3)が可能。
実用化イメージ

超音波計測は非侵襲であり、医療のみならず、健康維持の様々な計測にも展開可能です。超音波計測部分はアナログですが、主な処理はディジタル信号です。

研究者

大学院工学研究科 電子工学専攻 電子制御工学講座

金井 浩  

Hiroshi Kanai

腎臓線維化の原因細胞を用いた線維化治療薬の開発

前の画像
次の画像
特徴・独自性
  • 慢性腎臓病は病態が複雑ですが、共通して腎臓が線維化することから、線維化が治療標的として注目されています。腎線維化は線維芽細胞が筋線維芽細胞に形質転換することによって進行しますが、私たちは、この形質転換は可逆的であり、線維化は治療可能であることを見出しました。また、腎臓の筋線維芽細胞に由来する細胞株「Replic細胞」を樹立し、Replic細胞が線維芽細胞の性質を回復する条件を同定しました。
実用化イメージ

線維化した腎臓の筋線維芽細胞に由来するReplic細胞株を元の線維芽細胞に戻す化合物や遺伝子を探索することにより、腎臓線維化および慢性腎臓病の革新的医療の開発につながる。

研究者

未来科学技術共同研究センター 開発研究部 酸素代謝制御プロジェクト

鈴木 教郎  

Norio Suzuki

心臓と血管の血圧反射機能を独立に定量診断することができる非侵襲診断装置

前の画像
次の画像
特徴・独自性
  • これまでに血管系の自律神経反射機能を診断する方法論は存在しなかった。我々は、心臓と血管の血圧反射機能を独立に定量診断する方法論を新しく発明した。メタボ対策などのヘルスケア産業に進展が期待される。
実用化イメージ

予防医学の機器開発、医薬品、サプリメントの効果判定、健康維持機器開発。

研究者

加齢医学研究所 非臨床試験推進センター 心臓病電子医学分野

山家 智之  

Tomoyuki Yambe

振動制御

前の画像
次の画像
特徴・独自性
  • 振動から取り出したエネルギーを使う「自家発電」による振動制御なので、「セルフパワード振動制御」と呼ばれます。回収エネルギーは余りますから、広範囲な用途に使えます。例えば、無電源通信・振動発電・振動エネルギーハーベスティング・ヘルスモニタリングの実施なども可能です。宇宙工学からスピンオフした技術です。高性能な振動発電としても使えます。
実用化イメージ

振動低減・ヘルスモニタリング・無電源無線通信
・ 工場の定常的な振動(回転機械・壁)
・ 電源コードが届かない回転体
・ 人から離れた橋梁・高架下・インフラ全般
・ 低周波騒音対策(防音壁など)

研究者

大学院工学研究科 航空宇宙工学専攻 宇宙システム講座(宇宙構造物工学分野)

槙原 幹十朗  

Kanjuro Makihara

スーパーコンピュータシステム設計とその応用に関する研究

前の画像
次の画像
特徴・独自性
  • 次世代超高性能スーパーコンピュータシステムを実現するハードウェアおよびシステムソフトウェアの要素技術の確立と、スーパーコンピュータシステムの卓越した情報処理能力を最大限に引き出せる高性能シミュレーション技術について研究を進めている。具体的には、3次元デバイスや不揮発メモリなど先進デバイス技術を活用した低消費電力、高メモリバンド幅スーパーコンピュータシステム設計とその利用技術の開発に取り組んでいる。
実用化イメージ

スーパーコンピュータ設計とその応用に関する産学連携研究を進めているが、ものづくりを支えるスーパーコンピュータ向けシミュレーションコードの高度化、高速化を必要とする企業との産学共同研究も可能である。

研究者

大学院情報科学研究科 情報基礎科学専攻 ソフトウェア科学講座(アーキテクチャ学分野)

小林 広明  

Hiroaki Kobayashi