• Top
  • Researchers

Researchers 287 Result(s), Themes 265 Result(s)

A

 T

Visual Computing with Secure ICT in the Big Data Era

NEXT
PREV
特徴・独自性
  • Our study focuses on sensing, processing, recognition, understanding, and analysis of enormous visual data collected in real-world environments. We have invented a set of advanced techniques of sub-pixel image analysis using phase-based image matching. Potential applications include personal recognition using various biometric traits (e.g., face, fingerprint, palm print, finger knuckle print, iris, and medical radiographs), machine vision, multi-view 3D reconstruction, image database search, and medical image computing. We are also studying fundamental techniques for building secure ICT infrastructure for the big data era; our research interests include tamper-resistant cryptographic processing and biometrics-based secure remote authentication.
実用化イメージ

We can provide collaboration and information exchange services for industries and other research organizations in the fields of image processing, computer vision, information security, biometrics, LSI design, and embedded system technologies. Many researchers and engineers from various companies, universities, and research institutions have visited our laboratory regardless of their technology fields. Our staff at the Intelligent Information System (IIS) Research Center will welcome potential collaborators: info@iisrc.ecei.tohoku.ac.jp

Researchers

Administrative Staff

Takafumi Aoki

Emergence in collective electrons in organic molecular materials

NEXT
PREV
特徴・独自性
  • The main research subjects in this group are the experimental investigations of the organic molecular conductors. The characteristic properties of the organic materials are multiple flexibilities owing to the assemble structure of nanometer-size molecules. This flexbility comes up recently for developing the organic electronic devices. We explore the fundamental electronic properties of the organic molecular materials which have wide range of the ground states from superconductivity to insulating states resulting from the strongly correlated electrons in the molecular pi-orbital. Such features are closely connected to flexible and multiple degrees of freedom in charge, spin, molecular latticeand molecules themselves. We are actively studying on the interesting and important issues in the condensed matter physics from the viewpoints of the characteristic flexbility of the organic molecular materials. We are prepared to provide academic consultations to companies interested in our research.
実用化イメージ

Researchers

Institute for Materials Research

Takahiko Sasaki

PVT-Variation-Aware VLSI System Based on Nonvolatile-Device/MOS-Hybrid Circuitry

NEXT
PREV
特徴・独自性
  • Nonvolatile devices, which can remain stored data without power supply, are generally used for ROM (Read-Only Memory) to store boot programs (the information to start up the computer and the basic instructions that operate it) in computers. One attractive feature is that it does not consume any static power while it remains stored data. ‘Nonvolatile logic' is a novel logic style that a nonvolatile device is used for not only a nonvolatile storage element such as ROM but also a logic-circuit element which is the basic component of a CPU and an entire system. By using the nonvolatile devices as storage elements of circuit-configuration information, we can realize a process-variation- aware logic circuit with small hardware overhead.
実用化イメージ

The proposed technique is effective for implementing high-performance and highly-reliable LSI fabricated with cutting-edge process technology. We expect we can conduct effective collaborative research in highly reliable VLSI-systems fields.

Researchers

Research Institute of Electrical Communication

Takahiro Hanyu

High-speed and low-power asynchronous Network-on-Chip system based multiple-valued current-mode logic

NEXT
PREV
特徴・独自性
  • Global intra-chip interconnection complexity not only limits the clock frequency, but causes clock-skew problems in synchronous system. Asynchronous control-based circuit design, where timing is managed locally, is one of the possible approaches to solve the above serious interconnection problem because the asynchronous design has many features which are low power dissipation, high speed and robustness. However, communication-steps overhead caused by handshaking much would generally affect the cycle time.
  • In our approach, a high-speed asynchronous data-transfer scheme is proposed based on multiple-valued encoding and current-mode circuits. The multiple-valued encoding enables to improve communication protocol essentially. Moreover, the current-mode circuits which has high-driving capability makes it possible to perform high-speed intra- and inter-chip network. By using this method, we expect that we can conduct effective collaborative research in high-speed and low-power communication LSIs such as a many-core LSI and a multi-module NoC.
実用化イメージ

Researchers

Research Institute of Electrical Communication

Takahiro Hanyu

Development of the high-quality and low-power display system for ultra-realistic communications

NEXT
PREV
特徴・独自性
  • Recently, with a spread of high definition video streaming services and ubiquitous network, development of high-quality, ultra-realistic and low-power display systems has been demanded. We have been studying physical properties of liquid crystal materials, precise control technique of polarization, high performance liquid crystal display (LCD) devices and its application to the advanced display systems for the realization of new media such as electric paper display and digital signage display, and low-energy society. We established a polarization control technology which realizes a precise control of polarization with liquid crystal materials. By using this world-leading technology, we have been studying the control of the surface alignment of liquid crystal molecules and developed a wide-viewing angle and fast switching liquid crystal display, ultra-high definition field-sequential-color display (Fig. 1), ultra-low power reflective full-color display (Fig. 2) and large-size high-quality display system.
  • We are also studying the ultra-realistic display systems such as a spatial 3D display and a multiple directional viewing display based on the precise light control technique as a next generation interactive communication technologies (Fig.3). We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Graduate School of Engineering

Takahiro Ishinabe

Developing energy creation and saving materials

NEXT
PREV
特徴・独自性
  • Most innovations have been triggered by advent of new materials. We focus on to explore new inorganic materials and their synthesis routes on the basis of our knowledge about the material design and various materials processing technologies. We develop proton conducting phosphate glasses working at intermediate temperatures and narrow gap oxide semiconductors applicable in visible and NIR regions. Thin-film solar cells, fuel cells using those materials are also developing.
実用化イメージ

We focus on oxide semiconductors and proton conducting electrolytes and electrodes in order to apply them in solar cells, fuel cells, light-emitting devices. But, applicable area of our technologies is not limited in those applications.

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Takahisa Omata

R&D in Semiconductor Materials and their Device Applications Bringing System Evolutions

NEXT
PREV
特徴・独自性
  • 1. Development of Distributed Feedback (DFB) Laser Diodes (LD) widely used in optical communications systems realizing a highly information-based society. This LD increases the transmission capacity by 25,000 times per fiber which means the bit rate of 10Tb/s.
  • 2. Nitride semiconductors famous for blue light emitting diodes.
  • (a) Proposal of InGaAlN system considering device applications in 1989
  • (b) Success in growth of single crystalline InGaN by metalorganic vapor phase epitaxy (MOVPE) in 1989
  • (c) Prediction of band-gap energy (Eg) of InN much smaller than the values reported in 1980s and its   experimental confirmation in 2002
  • (d) Observation of photoluminescence from InGaN in 1991
  • (e) Prediction of phase separation in InGaAlN in 1997
実用化イメージ

DFB-LD: Fabrication of periodic structure with submicron scale, Epitaxial growth of semiconductor films on the substrate with fine structures, LD fabrication process, device evaluation, and device simulation

Nitride Semiconductors: MOVPE growth, N-polar growth, Evaluation of semiconductor materials, Fabrication of light-emitting devices, solar cells, and high-power transistors

Researchers

New Industry Creation Hatchery Center

Takashi Matsuoka

Cheaper, higher quality GaN freestanding substrates using N polarity control.

概要

Nitride semiconductor free-standing substrate production method
https://www.t-technoarch.co.jp/data/anken_en/T14-121.pdf
This invention relates to a technique for producing high-quality nitride semiconductor freestanding substrates at a lower cost. The invention also includes the use of SCAlMgO4 substrates as seed crystals. The dislocation density of nitride semiconductors on this substrate becomes lower. By controlling the crystal polarity, the crystal diameter can be expanded as well as the thickness of the nitride semiconductor.

従来技術との比較

It is possible to fabricate freestanding nitride semiconductor substrates with lower through-dislocation density than conventional substrates. Furthermore, the cleavage property of ScMgAlO4, which serves as the substrate, facilitates the exfoliation of the nitride semiconductor and reduces the cost of substrate fabrication.

特徴・独自性
  • Usage of ScAlMgO4 as a source substrate.
  • Expansion of crystal diameter by using N-polar growth
  • When ScAlMgO4 is used as the seed crystal and AlN is formed as the surface protective layer of this crystal, the surface shall be further nitrided after oxidation of the surface.
  • The main surface of the seed crystal shall be inclined 0.4 to 1.2° from the c-plane.
実用化イメージ

This invention is to provide high-quality, low-cost free-standing nitride semiconductor substrates for optical devices such as light-emitting diodes and lasers, and transistors operated under high power, high voltage, and high frequency. Companies are expected to verify the commercialization of the product.

Researchers

New Industry Creation Hatchery Center

Takashi Matsuoka

Advanced Educational Environment with Interactive Instruction System IMPRESSION

NEXT
PREV
特徴・独自性
  • IMPRESSION is an interactive instruction system for both face-to-face lesson and distance education.
  • It was designed to facilitate teachers to plan and perform effective and attractive lessons with various multimedia materials, and help to evaluate performed lessons and improve them based on the double loop instructional design process, which is focusing on interaction between a teacher and students.
実用化イメージ

It could be used to perform advanced education with multimedia materials in schools, and also to design and implement training for employees at branch offices.

Researchers

Center for Data-driven Science and Artificial Intelligence

Takashi Mitsuishi

Hormone Actions in Human Breast Carcinoma

NEXT
PREV
特徴・独自性
  • Breast cancer is one of the most common malignancies in women worldwide. Therefore, it is very important to investigate biological features of breast carcinoma in order to improve clinical outcome of the patients. It is well known that estrogens play important roles in the development of human breast carcinomas, and endocrine therapies are frequently used in these patients to block the intratumoral estrogen actions. In the Division of Pathology and Histotechnology, we analyze hormone actions in breast carcinoma by pathological methods as well as various molecular biological techniques.
実用化イメージ

It will be possible to newly develop diagnostic techniques regarding prediction of prognosis and/or effectiveness of treatment in breast cancer patients.

Researchers

Graduate School of Medicine

Takashi Suzuki

Quantum and Molecular Dynamic Simulations of Transport Phenomena in Fuel Cell

NEXT
PREV
特徴・独自性
  • It is necessary to grasp nanoscale transport phenomena of materials in polymer electrolyte fuel cell to improve its performance. In our laboratory, nanoscale transport phenomena are analyzed by large scale molecular dynamics simulations using a supercomputer system. As the present theme, the dependence of the materials or structures of polymer electrolyte membrane on the ability of proton transfer(Fig. 1), the ability of proton transfer or oxygen permeability of ionomer in catalyst layer(Fig. 2), and the mechanism of transport phenomena of a water droplet in a nano pore in gas diffusion layer or micro porous layer(Fig. 3), are analyzed in detail.
実用化イメージ

These research can be applied to the analysis of flow field in devices which have nanoscale structure, for instance, fabrication process of semiconductor, friction phenomena of such nanoscale devices or next generation batteries, as well as the field of fuel cell.

Researchers

Institute of Fluid Science

Takashi Tokumasu

Development of Wearable Motion Measurement System for Motor Rehabilitation and Healthcare

NEXT
PREV
特徴・独自性
  • In order to realize wealthy and vibrant local communities, it is desired that people in the community are healthy. However, the amount of the daily activity decreases as they get older, which increases the risks of the fall by weakened lower limb muscles and of the cerebrovascular disease, and so on. Therefore, for the elderly people, there is increased need of the walking training and the movement assistance in daily life, and of the rehabilitation aid.
  • In this study, focusing on the motor function of the lower limbs that is important for independent activities of daily living and that relates to the health maintenance, development of assistive technologies for decreased gait ability or for dysfunction of lower limbs are performed based on the technologies of electronics and signal processing. Especially, the wearable sensor system using gyroscopes and accelerometers are developed to measure kinetic information, and then the evaluation system for the gait ability and the lower limbs motor function is developed in this study.
実用化イメージ

The goal of this study is to realize simple and convenient measurement and accumulation of various information of gait, to visualize the obtained data for determination of training effect and evaluation of motor function, and to provide appropriate training program for each subject.

Researchers

Graduate School of Biomedical Engineering

Takashi Watanabe

Development of the method of Baby Borehole Hydraulic Fracturing, BABHY

特徴・独自性
  • For the effective measurement of the reopening pressure in hydraulic fracturing, it is necessary to use the testing equipment with sufficiently small compliance. This limitation makes it difficult to apply the hydraulic fracturing for the measurement of the maximum stress, because the compliance of conventional equipments is generally so large. Taking account of this situation, we proposed a new concept which allows us to do the in-situ tests of hydraulic fracturing for stress measurement at so deep depths as more than 1 km. We call the concept the Baby Borehole Hydrofracturing, BABHY for short. In order to put the new concept into practice, we developed the BABHY sonde and finally we succeeded to carry out hydraulic fracturing test by using the tools in a vertical borehole of 811 m depth. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Fluid Science

Takatoshi Ito

Synthesis of Biologically Active Cyclodepsipeptide Natural Products

NEXT
PREV
特徴・独自性
  • Cyclodepsipeptide natural products include optically active hydroxy acids as well as various unnatural amino acids and exhibit a variety of biological activity depending on the peptide sequence, chirality, and selection of the hydroxy acids. Structure-activity relationships of a synthetic library of natural products could give us significant information of not only biologically important moieties but also intact positions in the biologically active small molecules. On the basis of the former information, more potent compounds and/or peptide mimetics can be designed. The latter information can also be important for making a molecular probe that is used for exploration of a target molecule.
実用化イメージ

We study for combinatorial synthesis of natural product analogues using solid-phase.

Researchers

Graduate School of Pharmaceutical Sciences

Takayuki Doi

Development of next-generation sterilization method by a plasma flow at atmospheric pressure

NEXT
PREV
特徴・独自性
  • Plasma sterilization has been developed as an alternative sterilization method due to its chemical activity, operation at low temperature and atmospheric pressure, low power consumption, low cost and safety. We have studied a mechanism of chemical species generation and transport in a plasma flow and, the sterilization efficacy and mechanism for several plasma sources at atmospheric pressure, such as a microwave plasma flow, a dielectric barrier discharge in a tube and a water vapor plasma flow. We already clarified that the damages of outer membrane and destructions of the cytoplasmic membrane of Escherichia coli by exposure to the microwave plasma flow. Fig. 1 shows the effect of plasma exposure on the E. coli. When the E. coli was exposed to the plasma, the height of the E. coli decreased and the potassium leakage of cytoplasmic material increased. For sterilization in a tube, we also clarified that an induced flow in the narrow tube by DBD transports chemical species and sterilize the whole inside surface of a tube as shown in Fig. 2. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.
実用化イメージ

Researchers

Institute of Fluid Science

Takehiko Sato

Creation of cancer cell specific oligonucleotide therapeutics

NEXT
PREV
特徴・独自性
  • Focusing our reseach interest mostly on the recognition and complexation behavior control of bioplymrs, such as DNA/RNA, proteines and so on. Another topics are reaction control based on molecular recognition phenomena in both ground and electronically excited states, we are pursuing mechanistic and synthetic studies on asymmetric photochemistry with supramolecular biopolymers as chiral reaction fields.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Takehiko Wada

Room temperature bonding using thin metal films (Atomic Diffusion Bonding)

NEXT
PREV
特徴・独自性
  • Atomic diffusion bonding of two flat wafers with thin metal films is a promising process to achieve wafer bonding at room temperature. High surface energies of metal films and a large atomic diffusion coefficient at the grain boundaries and film surfaces enable bonding at room temperature without unusually high loading pressure. This technique, which enables bonding of any mirror-polished wafer, is gaining wider use for fabricating optical and electrical devices. Moreover, bonding of mirror polished metals and polymer sheets can be achieved, which further extends the application of this bonding technique.
実用化イメージ

Optical, power and electrical devices, MEMS, bonding of polymer sheets, metals, and ceramics for precision mechanical equipments.

Researchers

Frontier Research Institute for Interdisciplinary Sciences

Takehito Shimatsu

Peptide formation under high P and T conditions: new carbon fibers

NEXT
PREV
特徴・独自性
  • Peptides are formed through the enzymatic actions in living organisms, but difficulty exists to form peptide by non-enzymatic actions. Here we report the success of peptide formation under anhydrous, high P and T conditions. We were successful to form 11-mer of glycine and 5-mer of alanine. They are important constituents of spider silk, which is a candidate of next generation of carbon fibers. Therefore, our techniques have potentials to apply making new carbon fibers without biotechnology.
実用化イメージ

Researchers

Graduate School of Science

Takeshi Kakegawa

Development of Fall-Prevention Footwear Based on Mechanical Analysis of Slip-Related Falls

NEXT
PREV
特徴・独自性
  • The number of fatalities due to falling accidents indoor/outdoor has increased in Japan as well as in other advanced countries. The fatalities due to falling accidents in a year have exceeded those due to traffic accidents in Japan recently. Because more than 80% of the fatalities are elderly people, it is considered an urgent issue to prevent their falling. We have conducted researches on falling during walking due to induced slip, in the contact interface of shoe sole and floor, through tribological and biomechanical approaches. We clarified the required values of static friction coefficient (figure 1), between shoe sole and floor, and how to gait to prevent slipping through kinetic analysis of gait. We also succeeded in the development of a unique footwear outsole having the high-grip property (figure 2) and high slip-resistant concrete pavement blocks (figure 3) through the collaboration with regional companies. We have recently conducted research and development of footwear that is able to prevent falls due to balance loss after slipping.
実用化イメージ

Products for fall prevention in daily life or in work site. Evaluation of slip resistance of footwear and floor materials.

Researchers

Graduate School of Engineering

Takeshi Yamaguchi

Biometric Monitor and Therapeutic Apparatus System Mounted Inside Mouth

NEXT
PREV
特徴・独自性
  • We propose the biometric monitor and therapeutic apparatus system with telemedicine, especially for the elderly and patients with chronic diseases. This system is consisted of the sensor probes gathering biometric information and daily living activities, the signal processing units with wireless telecommunication with telemedicine center, and the therapeutic operation units with drug delivery into the mouth.
実用化イメージ

This system is embedded in usual dental prosthesis, such as denture or mouthpiece, so that this system can be installed into the mouth with no sense of discomfort. The system provides the necessary means of health support in an aging society, especially for the elderly who live alone and the hospital inpatients.

Researchers

Graduate School of Dentistry

Takeyoshi Koseki