• Top
  • Researchers

Researchers 287 Result(s), Themes 265 Result(s)

A

 S

Spintronics Devices and Materials

NEXT
PREV
特徴・独自性
  • Spintronics is a technology utilizing electron spin which provided magnetic sensor, nonvolatile magnetic memory, and so on. Our studies are as below.
  • Noble & Rare-earth free magnetic films with large perpendicular magnetic anisotropy. We achieved to develop various Mn-bases alloy films exhibiting high perpendicular magnetic anisotropy (Fig.1 ).
  • THz range observation of magnetization motion. We achieved to detect a motion of magnetization using pulse laser in time domain (Fig. 2).
  • Novel organic spin devices. We achieved to fabricate hybrid junction consisting of an organic layer sandwiched by two inorganic magnetic layers and to observe magnetoresistance effect.
  • Tunnel Magnetoresistive devices: We are developing TMR devices with Mn-Ga alloys films (Fig.3 ).
実用化イメージ

Magnetic memory and storage. Microwave and Terahertz wave. Magnetic sensors.
We hope to conduct collaborative research with a willing company for a practical application of these devices and materials in industry.

Researchers

Advanced Institute for Materials Research

Shigemi Mizukami

Hardware Development of Brain Computer and its Application to Visual Information Processing

NEXT
PREV
特徴・独自性
  • Toward realizing a high-performance neuromorphic vision processing system, our research involves a neural network model of spatial perception based on motion-stereo vision and its implementation on a very large scale integrated circuit (VLSI). Important parameters for spatial perception such as time-to-contact, orientation, and the shortest distance to plane surfaces of a target object are recognized by using the model without knowing moving direction and velocity of the object. We have developed a VLSI capable of performing visual perception based on the model with low power consumption, reduced less than 1/100 compared with a commercial CPU.
実用化イメージ

Targeted applications include a drone flying autonomously equipped with collision avoidance system by visual perception. Targeted industry includes infrastructure inspection, agriculture, logistics, and so on.

Researchers

Research Institute of Electrical Communication

Shigeo Sato

Next-generation Technology Development of High-efficient Utilization of Valuable Elements

NEXT
PREV
特徴・独自性
  • Practical materials and devices are changed by the times. Their performances of the materials are generally improved by utilizing valuable elements. In the next generation, it is required that novel materials and devices are developed, whereas it appears that the quality of minerals and raw materials is degraded. We are taking several initiatives of research and development of high-efficient utilization of valuable elements.
実用化イメージ

We are promoting sound industry-academia collaboration by providing reliable research results and a number of true knowledge to many people based on the research achievements we have built up to now, and also by notifying related information.

Researchers

Micro System Integration Center

Shigeru Suzuki

Development of Advanced Device and Process Technologies and New Image Sensors

NEXT
PREV
特徴・独自性
  • Toward the ultimate performances of image sensors, advanced research activities are being conducted that cover a wide range of technology fields from cleanroom infrastructure, materials, process equipment, process, device, circuit, assembly, signal processing, measurement/evaluation and reliability. Following technologies have been successfully commercialized:
  • A fast and accurate measurement technology of electrical characteristics for over 1 million transistors
  • A wide dynamic range CMOS image sensor technology capturing images over five decade brightness ranges
  • An ultra-fast CMOS image sensor technology with 10 million frames/sec
実用化イメージ

Followings are available for industry collaborators:
A. 200mm-diameter-wafer silicon device fabrication utilizing the ultra-clean facility including wafer mutual fabrication processing between device manufacturers.
B. Process technology development and various kinds of analyses.
C. Development of new image sensors.

Researchers

New Industry Creation Hatchery Center

Shigetoshi Sugawa

Imaging and photoregulation of biological functions

特徴・独自性
  • To properly understand the functions of biomolecules, it is essential to observe them under physiological conditions where the interactions with other biomolecules are preserved. Therefore, we are developing new functional molecules using both organic chemistry and protein science approaches, and working on the visualization and optical control of biomolecules and their functions. Especially, we have developed fluorescent probes that quantitate the concentration of biomolecules or ions in subcellular regions such as organelles and caged compounds and photoswitches that optically manipulate the biomolecular functions.
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Shin Mizukami

“HYDRIDE" Researches for Energy Applications

NEXT
PREV
特徴・独自性
  • This group is engaged in basic and applied researches of "hydrides" for practical use in hydrogen energy system. The main subject is the exploration of advanced hydrogen storage materials which support hydrogen energy technologies such as fuel cells. Currently, we synthesize a wide variety of novel hydrides composed of lightweight metals with specific nano-structures using advanced techniques for crystal and electronic structure analyses. In addition to the hydrogen storage, we develop the wide research fields related to hydrides, such as fast lithium ionic conductors.
実用化イメージ

Besides the contributions in industrial progress through the material development for future hydrogen energy system and next-generation secondary battery, we positively provide technical assistance to organizations and companies concerned about our findings.

Researchers

Advanced Institute for Materials Research

Shin-Ichi Orimo

High-Speed Vision for Real-Time Motion Analysis

NEXT
PREV
特徴・独自性
  • We are investigating high-speed vision systems that enable real-time image acquisition and visual processing at frame rates substantially higher than the standard video rate.
実用化イメージ

High-speed vision systems are useful for fast measurement and control of dynamic systems in general. When combined with external facilities such as high-speed projectors or acceleration sensors, they enable further wider applications including fast 3D measurement or object identification.

Researchers

Graduate School of Information Sciences

Shingo Kagami

Prevention and amelioration of late-onset hypogonadism by food ingredients

NEXT
PREV
特徴・独自性
  • Late-onset hypogonadism (LOH) is induced by age-related decline of testosterone synthesis, which leads to decrease muscle and sexual nature as well as mental symptoms such as depression. Now great attention is focused on prevention and amelioration of LOH via ingestion of foods and supplements.
  • We developed screening system of functional ingredients from food extracts for anti-LOH using testis-derived cells, and clarified that vitamins, nutraceuticals, and edible plant extracts have potentiating activities for the production of testosterone.
実用化イメージ

Researchers

Graduate School of Agricultural Science

SHIRAKAWA Hitoshi

Study on Land Use Management and Residential Movement in Tsunami Affected Areas

NEXT
PREV
特徴・独自性
  • The study focused on areas affected by the tsunami caused by the Great East Japan Earthquake, and clarified the impact of reconstruction projects on spatial transformation and residents' residential relocation, as well as residents' satisfaction with the projects. In the boundary area of architecture, urban planning, and landscape architecture, we combine qualitative research, such as participatory observation with sociological and local community perspectives, and quantitative research using data obtained in the field. I would like to explore better relationships between people and nature, and propose methods that lead to sustainable urban development.
実用化イメージ

I have practical experience in post-disaster land use and workshops with local residents. I believe that they will be able to make use of their knowledge and experience in the pre-disaster reconstruction efforts in the areas that are expected to be affected by the disaster in the future.

Researchers

Graduate School of Engineering

Shoko Araki

MEMS/Micromachines and Microfabrication Technology

NEXT
PREV
特徴・独自性
  • We are studying MEMS (Micro Electro Mechanical Systems) and related technologies, which are typically used for the input/output of information/communication devices, the safety of automobiles etc. Our representative topics include integrated sensors, piezoelectric devices, RF MEMS, micro energy devices and wafer-level packages. Our facilities are open-accessible and well equipped with a lot of tools for lithography, dry/wet etching, thin film deposition, wafer bonding, device mounting and evaluations, which can be operated by each researcher. Using these tools, a variety of MEMS are being prototyped. Also, new microfabrication tools are being developed by ourselves.
実用化イメージ

We are collaborating with many companies, from which visiting researchers are dispatched to our laboratory. We also accept companies which want to just use specific tools in our facilities. Consultation is always welcome.

Researchers

Graduate School of Engineering

Shuji Tanaka

Spintronics device

特徴・独自性
  • To realize ultralow-power and high-performance integrated circuit and information processing, spintronics physics, material, devices are studied.
実用化イメージ

Researchers

Research Institute of Electrical Communication

Shunsuke Fukami

 T

Supercritical Hydrothermal Synthesis of Organic-Inorganic Hybrid Nanoparticles

NEXT
PREV
特徴・独自性
  • We invented supercritical hydrothermal synthesis method for the synthesis of organic modified nanoparticles (NPs). Under the supercritical state, the organic molecules and metal salt aqueous solutions are miscible and water molecule works as an acid/base catalyst for the reactions. Organic-inorganic conjugate NPs can be synthesized under this condition. This hybrid NPs show high affinity with the organic solvent or the polymer matrix, which leads to fabricate the organic inorganic hybrid nanomaterials with the trade-off function (super hybird nanomaterials). These hybrid materials of polymer and ceramics fabricated with NPs achieve both high thermal conductivity and easy thin film flexible fabrication, namely trade-off function.
実用化イメージ

For example, by the surface modification of BN particles by supercritical method, affinity of BN and polymers could be improved, so that high BN content of hybrid materials, thus high thermal conductivity materials, could be synthesized. Also by dispersing high refractive index NPs like TiO2 or ZrO2 into polymers transparently, we can tune the refractive index of the polymers. CeO2 nanoparticles are expected to be used for high performance catalysts. To transfer those supercritical fluid nano technologies, a consortium was launched with more than 70 companies.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

Development of a reaction process in supercritical water

NEXT
PREV
特徴・独自性
  • We are developing a new continuous flow type process for supercritical reactions. Under the supercritical state, the organic molecules and metal salt aqueous solutions are miscible and water molecule works as an acid/base catalyst which leads to rapid reactions. In order to apply such new reaction fields to an industrial process, it is necessary to establish the process design basis by understanding phenomena in the reaction fields, on the basis of phase equilibrium, flux and reaction kinetics theory. So while developing a process, we are doing research for the establishment of the process design basis.
実用化イメージ

Examples are a process for the synthesis of organic modified nanoparticles (MPs), a process for the pretreatment and solubilization of biomass in the supercritical/subcritical water and a process for the refinery of heavy oil in the supercritical water.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

Polymer-nanoparticle hybrid materials

NEXT
PREV
特徴・独自性
  • Hybrid materials that show multi-functions of polymer and nanoparticles are expected to be used in future industries, and thus many research and development have been actively conducted. However, since the affinity of polymer and inorganic nanoparticles is very low, in most of the cases, properties of different materials are incompatible in the hybrid materials. To create the hybrid materials with incompatible multi-functions has been considered a difficult task.
  • However, by using supercritical fluid technology, we have succeeded in making hybrid materials with incompatible multi-functions.
実用化イメージ

Now, variety of hybrid materials are being developed, including
・Transparent, flexible, high reflective index, and high fabricability,
・Flexible, high heat conductivity, low electric resistivity, and high fabricability.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

Low temperature reforming of hydrocarbons using metal oxide nanoparticles synthesized by supercritical method

NEXT
PREV
特徴・独自性
  • Our research group has succeeded in synthesizing various metal oxide nanoparticles with controlled size and exposure crystal planes by using organic modifiers under supercritical water conditions. The oxygen storage/release capacity of those materials in the low-temperature region is very high, and the reforming reaction of oxidative hydrocarbon proceeds at a significant rate. Besides, by combining the supercritical CO2 drying method, we have succeeded in forming a complex in which oxide nanoparticles are dispersed at a high concentration on the surface of the porous material, realizing both high oxygen storage/release capability and stability.
実用化イメージ

Low-temperature reforming reaction of biomass wastes, heavy oils, and methane. In the future, it is expected to be a technology that will lead to the construction of a low-carbon society, including CO2-free complete recycling of waste plastics.

Researchers

Advanced Institute for Materials Research

Tadafumi Ajiri

Development of Atom-scale Spectroscopy Measurement for Nano Materials

NEXT
PREV
特徴・独自性
  • Scanning tunneling microscope (STM) and atomic force microscope (AFM) are among a few microscopes which enable a direct observation of atomic scale structures of materials. If compared with other electron microscope like transmission electron microscope (TEM), the energy of the electron used for STM is very low that has a big advantage of low damage for sample. Thus STM and AFM are regarded as the most important tools to characterize materials in nanotechnology. The research is now developing from a mere observation of the shape of material to the characterization specific properties of materials with an atomic scale resolution. These properties include spin and molecule vibration; well established techniques like ESR/NMR and infrared-spectroscopy requires more than billions of molecules to obtain data, while STM can obtain these data for a single molecule.
  • We are interested following issues and like to have a collaboration with industrial companies.
  • 1. Molecule-scale morphological characterization of soft-material, polymers and bio material.
  • 2. Site specific vibration spectroscopy of molecules with an atomic resolution.
  • 3. Single spin detection with ESR-STM method
  • 4. Developing atom-scale characterization tool
実用化イメージ

Researchers

Institute of Multidisciplinary Research for Advanced Materials

Tadahiro Komeda

Advanced Control of Microstructure and Property of Structural Metallic Materials

NEXT
PREV
特徴・独自性
  • Microstructure represents various kinds of heterogeneities in the metallic materials, i.e., grains, component phase, lattice defects and chemical inhomogeneity such as impurity/alloying elements. It can be modified through control of phase transformation/precipitation and deformation/recrystallization by adjusting compositions of materials and/or through processing routes (heat treatment, deformation). Such expertise in micro/nanostructure control is very important in production of current materials from viewpoints of energy saving and recycling in structural materials such as steels and titanium alloys.
  • We attempt to apply more advanced control of micro/nanostructures, such as atomic structures of crystalline interfaces, chemistory in an atomic scale (e.g., segregation) and so on. Fundamentals of microstructure formation (thermodynamics, kinetics, crystallography) are examined both theoretically and experimentally to clarify key factors for microstructure control. Another important aspect in our research is the improvement of mechanical property by microstructure manipulation.
実用化イメージ

Possibilities to establish new functions (e.g., superplasticity, shape memory/superelasticity) as well as superior mechanical properties (e.g., ultrahigh strength with high toughness/ductility) is also explored.

Researchers

Institute for Materials Research

Tadashi Furuhara

Development of Terahertz Semiconductor Devices Using Novel Nano-Heterostructures and Materials and their ICT Applications

NEXT
PREV
特徴・独自性
  • Terahertz coherent electromagnetic waves are expected to explore the potential application fields of future information and communications technologies. We are developing novel, ultra-broadband integrated signal-processing devices/systems operating in the terahertz frequency regime employing novel semiconductor nano-heterostructures and materials. We are challenging to develop room-temperature operating coherent and intense laser transistors and fast-response and highly sensitive detectors working for the next-generation beyond-5G terahertz wireless communications as well as safety and security terahertz imaging applications.
  • A. Ultimately-fast terahertz transistors utilizing graphene, carbon-based new material, and compound semiconductor heterojunction material systems:
  • Graphene-based novel terahertz photonics devices, breaking through the limit on conventional technology. Recently we have succeeded in single-mode terahertz lasing in a dual-gate graphene-channel laser transistor device at 100K. Moreover, we have succeeded in room-temperature terahertz coherent amplification in a dual-grating-gate graphene channel transistor promoted by current-driven graphene Dirac plasmon instability. The obtained maximal gain of 9% is four times as high as the quantum efficiency limit when terahertz photons interact directly with graphene electrons without excitation of graphene plasmons. These will be big steps towards realization of an intense, room-temperature operating graphene plasmonic terahertz laser transistors.
  • B. Frequency-tunable plasmon-resonant terahertz emitter and detectors and metamaterial circuits:
  • By using an original dual-grating-gate high-electron mobility transistor (DGG-HEMT) structure with InP-based material systems record-breaking ultrahigh-sensitive detection of terahertz radiation have been realized at room temperature.
実用化イメージ

By making full use of these world-leading device/circuit technologies, we are exploring future ultra-broadband 6G- and 7G-class wireless communication systems as well as spectroscopic/imaging systems for safety and security. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Researchers

Research Institute of Electrical Communication

Taiichi Otsuji

Changing Corporate In-Service Training

NEXT
PREV
特徴・独自性
  • We have developed a system named PF-NOTE that the system uses video cameras, clickers and a computer to bookmark an audience's clicker feedback into simultaneously recorded video. We are also doing research for creating effective education or learning programs by using the developed system. The system has been mainly used for reflective learning, and we have found that this system is effective in various situations for both teacher and learners, such as practice teaching for early career teachers, developing presentation skills, and developing discussion skills.
実用化イメージ

We offer PF-NOTE system(s) and education/learning program(s) to companies that are of particular interest with respect to communication skills training, passing skills to the younger generation of employees, observation skill training and job interview training.

Researchers

Graduate School of Education

Taira Nakajima