登録されている研究者 402人(研究テーマ408件)

放射光計測と高度情報処理の融合による物質機能可視化への展開

前の画像
次の画像
特徴・独自性
  • 放射光を光源とするイメージング・分光技術を駆使することで実用バルク材料全体の構造・元素・電子状態を多元的に可視化することができます。特に、放射光のコヒーレント成分を利活用したコヒーレント回折イメージングは、X 線領域で未踏であったナノスケールでの構造可視化を実現する次世代の可視化計測法として注目されています。また、近年の情報処理技術の発展に伴い、3次元空間に分布する元素・電子状態の情報から構造−機能相関に関する特徴的な情報を抽出することも可能になりつつあります。先進的X線光学技術を駆使した次世代の放射光イメージング・分光法の開拓を基軸とし、高度情報処理技術を活用することで、実用材料の機能を可視化する基盤を構築することを目指します。
実用化イメージ

研究者

国際放射光イノベーション・スマート研究センター 横幹研究部門 データ可視化スマートラボ

髙橋 幸生  

Yukio Takahashi

多文化共生と人権教育

前の画像
次の画像
特徴・独自性
  • 本研究は、留学生と国内学生が集まる国際共修授業において、人権を柱にクラスを運営し、普遍的な概念である人権を取り上げて教育実践し、調査研究を行う点に独自性がある。具体的には、普遍的ではあるが地域性、個別具体的な側面のある人権について、多様なバックグラウンドを持つ学生が共に学ぶとき、人権が切り口となり、参加者の多様性が生かされて、参加者間に関係性が構築され、学びの深まりにつながるかを探求している。
実用化イメージ

「多文化共生・人権」に関わる活動を行っている団体との連携が可能であると考え、連携したいと思っている。本研究の成果は、教室内にとどまらず、地域、国、世界で生かされる知識、技能、態度の育成を目指している。

研究者

高度教養教育・学生支援機構 高等教育開発部門 国際化教育開発室

髙松 美能  

Mino Takamatsu

固体イオニクス材料のエネルギー変換・貯蔵・利用技術への応用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 固体イオニクスを中心として高度なエネルギー変換を実現するための機能性材料の開発を行っている。燃料電池や蓄電池の高性能化のためには、高いイオン伝導度と化学的安定性を有するイオン導電体や混合導電体が必要とされ、これら材料を酸化物の欠陥化学や熱力学に基づき探索し、デバイスに応用している。これまでに酸素分離膜型水素製造システムや全固体リチウム電池を開発している。
実用化イメージ

酸化物イオン・電子混合導電体は小型水素製造システムや燃料電池の電極材料、酸素吸蔵放出材料、純酸素の工業的利用と関連が深く、リチウム伝導体は発火の危険性のない全固体電池への応用が期待される。

研究者

大学院工学研究科 知能デバイス材料学専攻 情報デバイス材料学講座(エネルギー情報材料学分野)

髙村 仁  

Hitoshi Takamura

脳MRIデータベースを用いた発達、加齢に関する研究

前の画像
次の画像
特徴・独自性
  • 遺伝要因、生活習慣がそれぞれ脳発達、加齢にどのような影響を与えるかを明らかにすることで、生涯健康脳の維持を目指す。これが明らかになることで、ある遺伝的素因を持つ個々人がどのような生活習慣を送ると、生涯健康脳が維持できるかが明らかになり、認知症等、種々の疾患の一次予防、二次予防が可能になる。更に、独自性は世界でも屈指の大規模脳MRI データベースを用いる点にある。
実用化イメージ

運動、睡眠、食品、楽器、その他の趣味に関わる業種といった、種々の生活習慣に関わる製品を開発している業界が該当すると考えられる。

研究者

スマート・エイジング学際重点研究センター

瀧 靖之  

Yasuyuki Taki

マイクロ波を利用した機能無機材料プロセッシング

前の画像
次の画像
特徴・独自性
  • マイクロ波は化学反応の駆動力としても注目されています。材料プロセッシングにおいては、単なる省エネルギー加熱としての特徴のみならず、反応促進効果や非平衡反応の進行が認められ、新素材を生み出す手法として期待できます。当研究室では、ミリ波からセンチ波に至るマイクロ波を駆使し、雰囲気制御を必要としない簡便な窒化物コーティング法や、サーメット焼結などの粉末冶金技術、金属ナノ粒子合成法を開発しています。
実用化イメージ

マイクロ波を利用した窒化物コーティング法は、オンサイトかつ短時間の成膜を可能にし、歯科インプラント材や宝飾品、切削工具等、チタン合金や各種セラミックス、硬質材料などに適用できます。

研究者

滝澤 博胤  

Hirotsugu Takizawa

大規模高度シミュレーションを実現するスーパーコンピュータ活用技術

前の画像
次の画像
特徴・独自性
  • 現代のスーパーコンピュータは大規模化・複雑化しており、その性能を引き出すのは容易ではありません。ハードウェアとソフトウェアのそれぞれの事情で生じる課題を十分に把握したうえで適切にプログラムを作成する必要があり、職人的な技能や専門的な知識が求められます。当研究室では、実際にスーパーコンピュータを運用しながら、現場で起こる実用上の課題を踏まえて未来のスーパーコンピュータのシステムを設計・創造し、その活用のために必要なシステムソフトウェアを研究開発しています。また、より大規模で高度なシミュレーションを実現するため、最先端ハードウェア/ソフトウェア技術の活用方法についても常に興味を持って取り組んでいます。
実用化イメージ

スーパーコンピュータの活用による大規模シミュレーションを実現するために、スパコン利用開始から並列化・高速化までを一貫して支援することができます。これまでにも、スパコンセンターとして多数のシミュレーションコードの並列化、高速化支援の実績があり、さらには大規模な科学技術計算ソフトウェア開発の生産性向上、効率化に関しても共同研究することができます。

研究者

サイバーサイエンスセンター 研究開発部 スーパーコンピューティング研究部

滝沢 寛之  

Hiroyuki Takizawa

細胞生物学

前の画像
次の画像
特徴・独自性
  • 細胞小器官の研究は、それぞれの細胞小器官が持つ個性的な内部空間(ルーメン)の機能を解き明かすことを中心に進んできましたが、細胞小器官を形作っている膜そのものにも重要な機能が潜んでいると考え研究をすすめています。
実用化イメージ

自然免疫応答を惹起する重要分子STING は細胞内物質輸送によってその活性が厳密に制御されています。STING の輸送を制御する化合物の開発により、STING が関与する炎症応答を増強・緩和する薬剤につながることが期待されます(製薬業界)

研究者

大学院生命科学研究科 脳生命統御科学専攻 細胞ネットワーク講座(細胞小器官疾患学分野)

田口 友彦  

Tomohiko Taguchi

溶融塩を用いた高温素材プロセッシング

前の画像
次の画像
特徴・独自性
  • 室温で固体のイオン結晶を加熱し、高温で溶融した液体を「溶融塩」と呼ぶ。金属アルミニウムは溶融塩中での電気分解で製造されており、産業界では大量に使用されている。その溶融塩を反応媒体として利用し、レアアース、チタン、シリコン、リチウム等、化学的に活性なレアメタルの製錬、リサイクル、表面改質法を研究している。日本でも実施可能な高付加価値製品の製造技術として、溶融塩技術を変貌させることを目指す。
実用化イメージ

業界としては、非鉄金属製錬、リサイクル、表面処理に従事する業界。用途としては、活性金属(合金)製造、廃棄物処理、耐酸化性コーティング等。

研究者

大学院工学研究科 金属フロンティア工学専攻 先端マテリアル物理化学講座(材料物理化学分野)

竹田 修  

Osamu Takeda

ポジトロン断層法(PET)を用いた機能・分子イメージング研究

前の画像
次の画像
特徴・独自性
  • PETを用いた機能・分子イメージングでは、生体臓器(ヒトや動物の脳、心臓、筋肉など)の代謝、血流、微量物質貯留、情報伝達機能などを対象が生きたままの状態で体外から測定できます。この特徴を生かして、疾患の早期診断や抗ヒスタミン薬などの治療薬の作用・副作用研究、運動・代替医療による健康増進研究などを進めております。
実用化イメージ

以下のようなテーマの産学連携が可能です。㈰さまざまな薬物や飲食物の摂取前後の体内変化の評価、㈪運動、代替療法、瞑想などが心身に与える効果の評価、㈫認知症早期診断研究など。
基礎から臨床への橋渡し研究、臨床研究法対応も進めており、物理、化学・薬学、工学と連携した幅広い研究・開発の展開が可能です。

研究者

サイクロトロン・ラジオアイソトープセンター サイクロトロン核医学研究部

田代 学  

Manabu Tashiro

バイオマスエネルギー

前の画像
次の画像
特徴・独自性
  • 生ごみや糞尿のメタン発酵によるバイオマスエネルギー生産は一般的になりつつあるが、農作物生産過程で出る茎葉などの非食用部分や難分解な食品系ごみからメタンガスと回収する技術として、牛の胃液を活用したルーメン・メタン発酵の研究をしている。特に、従来前処理・後処理と2相処理が必要であったものを1相処理でもできるように工夫している。様々な原料のメタンガス生産促進について調査している。
実用化イメージ

農業系廃棄物が出るような企業や、メタン発酵を既に行なっている企業、有機性廃棄物を資源循環したいと思っている企業が良いと考える。自社で排出されるごみを有効利用することでCO2削減に貢献したい企業。

研究者

大学院農学研究科 生物生産科学専攻 動物生命科学講座(動物環境管理学分野)

多田 千佳  

Chika Tada

温泉熱・排熱を活用した小型メタン発酵システムと資源循環構築

前の画像
次の画像
特徴・独自性
  • メタン発酵とは、生ゴミや糞尿などから嫌気性微生物によってメタンガスを得るもので、本研究では、メタン発酵槽の加温に、温泉熱や工場等からの排熱を利用し、加温にかかる消費エネルギーを削減し、小型メタン発酵でもエネルギー収支をプラスにするシステムである。また、小型ゆえに初期投資を小さくし、一企業等でも購入可能な価格帯にし、分散型エネルギー生産を可能にし、消化液の液肥利用による資源循環を構築する。
実用化イメージ

食品工場、飲食店、ホテル・温泉旅館など。これまで生ゴミ処理コストを要している企業。熱やエネルギー生産をしたい企業。宮城県鳴子温泉では、ガス灯の燃料に温泉街のゴミからできるガスを利用している。

研究者

大学院農学研究科 生物生産科学専攻 動物生命科学講座(動物環境管理学分野)

多田 千佳  

Chika Tada

メタン菌カソード電極を利用した微生物燃料電池

前の画像
次の画像
特徴・独自性
  • 本微生物燃料電池は、カソード電極に、これまでの方法で用いられている白金などのレアメタルではなく、微生物のメタン菌を使用することで、酸素から水を得るのではなく、二酸化炭素をエネルギーガスのメタンガスに変換しながら、電流を得る新しい電池である。 すでに、高温メタン菌カソード電極では500 mW/m2を達成した。
実用化イメージ

CO2をCH4に変換し、電流も得られるため、大量にCO2排出する場所や、高濃度有機物が蓄積した場所で持続的に電気エネルギーを獲得したい企業
現状の出力では、センサー等技術に利用できると考えている。

研究者

大学院農学研究科 生物生産科学専攻 動物生命科学講座(動物環境管理学分野)

多田 千佳  

Chika Tada

安全で安心して暮らせる豊かな社会を実現するためのロボットテクノロジー

前の画像
次の画像
特徴・独自性
  • 倒壊瓦礫の数cmの隙間をぬって内部調査できる世界唯一のレスキューロボット「能動スコープカメラ」、福島原発で2〜5階を初めて調査した世界唯一のロボット「クインス」などを研究開発してきました。その技術は、トヨタ東日本との共同による氷雪環境の屋外で稼働する無人搬送車の製造ライン投入、清水建設との共同による瓦礫内調査システム「ロボ・スコープ」の開発など、さまざまな応用に展開されています。
実用化イメージ

現実の問題に対する求解を通じた教育・研究をモットーに、現段階で10 件近くの産学連携研究を進めています。特に、屋外調査、インフラ・設備点検など、ロボットによる遠隔化・自動化に特徴があります。

研究者

大学院情報科学研究科 応用情報科学専攻 応用情報技術論講座(人間-ロボット情報学分野)

田所 諭  

Satoshi Tadokoro

新規分子CAMPを標的とした分裂期細胞死誘導によるがん治療の開発

前の画像
次の画像
特徴・独自性
  • 我々は細胞分裂に関係する新規分子CAMP を発見し、この機能を抑制するとがん細胞の分裂が妨げられるだけでなく速やかに細胞死が起こることを見出した。これにより、細胞分裂期に作用する従来の抗がん剤で見られる耐性を抑えることができた。またCAMPの機能抑制による細胞死の促進は正常細胞では見られなかったことから、がん細胞特異的な薬剤耐性の少ない治療法の開発につながることが期待される。
実用化イメージ

CAMPの機能を抑制する化合物の開発は、薬剤耐性の少ない抗がん剤の創薬に結びつく可能性がある。

研究者

加齢医学研究所 腫瘍制御研究部門 分子腫瘍学研究分野

田中 耕三  

Kozo Tanaka

MEMS・マイクロマシンと微細加工技術に関する研究

前の画像
次の画像
特徴・独自性
  • 情報機器の入出力や自動車の安全のために用いられるMEMSと呼ばれるマイクロデバイス/システムの研究を行っています。集積化センサ、圧電デバイス、高周波MEMS、過酷環境センサ、マイクロエネルギーデバイス、ウェハレベルパッケージなどの研究に実績があります。リソグラフィ、エッチング、成膜、ウェハ接合、実装、各種評価のための装置を多数揃え、研究者自身が操作して研究できる開かれた実験環境を提供しています。
実用化イメージ

これまでに多くの企業から研究員を受け入れ、産学共同研究を行うとともに、スポット的に装置を利用頂くような支援も積極的に行っています。豊富な資料・データに基づき、随時、技術相談を受け付けています。

研究者

大学院工学研究科 ロボティクス専攻 ナノシステム講座(スマートシステム集積学分野)

田中 秀治  

Shuji Tanaka

LSI技術を用いた医療・ヘルスケア用マイクロナノ集積システム

前の画像
次の画像
特徴・独自性
  • 半導体工学と神経工学を基盤として、生体の構造と機能の理解に基づいた医療・ヘルスケア用の新しいマイクロ・ナノ集積システムの研究開発を行っています。脳をはじめとする生体の電気的・化学的状態を多元的・立体的に計測解析するための神経プローブや生体信号処理LSI、生体と同じ積層構造を有することにより高いQOLを実現する完全埋込型人工網膜などの研究開発を推進しています。また、シリコン貫通配線(TSV)を用いたCtC/CtW/WtW 三次元集積化技術の研究開発も行っています。
実用化イメージ

これまでに国内外の企業・研究機関と三次元集積化技術や生体信号処理LSI に関する共同研究を積極的に行っています。
㈰医療現場での生体情報モニタリング機器やパーソナルヘルスケア機器に使用される集積回路や医用集積モジュールの開発
㈪シリコン貫通配線を用いた三次元集積回路の開発(3D-LSI/TSV)

研究者

大学院医工学研究科 医工学専攻 生体機械システム医工学講座(医用ナノシステム学分野)

田中 徹  

Tetsu Tanaka

触覚・触感センサの開発に関する研究

前の画像
次の画像
特徴・独自性
  • 触覚・触感は、粗骨感、硬軟感、乾湿感、温冷感などの基礎感覚やその組み合わせの複合的な感覚であるが、これらの感覚は力、ひずみや温冷情報、粘性、振動などの情報で表現できると考えられる。これまで、ヒトの感覚受容器に対応させた触覚センサと触動作を模したセンサ機構を統合した能動型触覚センサシステムを開発し、種々の感性ワードや粗さ、柔らかさや温冷感の測定が可能となるシステムを実現した。また、触覚・触感はこれらの感覚に加え、その組み合わせなどもあり、メカニズムの解明は、センサの開発において重要である。本研究ではこれまで得られた基礎的な感覚やその他の感覚の関係、またその感覚取得に関連する物理情報等、触覚・触感のメカニズムを明らかにし、高機能な触覚・触感情報を可能とするセンサシステムの開発をする。
実用化イメージ

ライフサイエンスのみにとどまらず、香粧品業界や繊維等の業界の他にも一般メーカーなども対象となり、ものづくりの分野で有効である。

研究者

大学院医工学研究科 医工学専攻 社会医工学講座(医療福祉工学分野)

田中 真美  

Mami Tanaka

垂直磁気記録と情報ストレージシステム

前の画像
次の画像
特徴・独自性
  • 大容量情報ストレージ技術に関する研究を行っている。コア技術である高密度磁気ストレージの実現のため、本研究所で発明された垂直磁気記録を用いる記録方式、デバイス及びマイクロマグネティック解析により、記録密度と性能の向上を目指している。ストレージとコンピューティングを近接させPB 級の大容量データの解析を行う新しい情報ストレージ・コンピューティングシステムに関する研究を行なっている。
実用化イメージ

大容量磁気ストレージ及びスピントロニクスメモリ(HDD、STT-MRAM 等)の研究や、コンピューティングを融合したエッジ型大規模コンピューテーショナル・ストレージシステムの研究

研究者

電気通信研究所 情報通信基盤研究部門 情報ストレージシステム研究室

田中 陽一郎  

Yoichiro Tanaka

人間と移動ロボットの共存

前の画像
次の画像
特徴・独自性
  • サービスロボットや自動運転車、パーソナルモビリティなど人間と共存する環境で動作する様々な新しい移動体が普及することが期待されています。本研究室では、これらの様々な移動体が安全かつ円滑に共存するための技術について研究しています。
  • 特に、人間の視覚的注意などの特性を考慮し、その動きを予測するという側面からアプローチしています。
実用化イメージ

サービスロボット、パーソナルモビリティ、自動運転車など、人間と共存する環境で動作する移動体の研究開発や、これらが安全に共存するための交通環境整備など。

研究者

大学院工学研究科 ロボティクス専攻 先進ロボティクス講座(先進ロボティクス分野)

田村 雄介  

Yusuke Tamura

電子ビーム積層造形技術による素形材製造技術

前の画像
次の画像
特徴・独自性
  • 大量生産を中心とする金属製品の「もの作り」は海外へ流出し、日本が生き残ってゆくためには高付加価値の多品種少量生産やカスタムメイド生産に移行する必要があります。電子ビーム積層造形法は三次元CADデータに基づく電子ビーム走査により、金属粉末を選択的に溶融・凝固させた層を繰り返し積層させて三次元構造体を製作する新たなネットシェイプ加工技術です。金型レスのAdditivemanufacturing 技術として有望です。
実用化イメージ

人工関節などの医療用機器のカスタム製造技術として。難加工性合金(チタン合金、マグネシウム合金など)からなる航空機・自動車部品などの製造に最適です。鋳造技術では不可能な素形材製造技術として期待されます。

研究者

未来科学技術共同研究センター 開発研究部 新規金属積層造形技術開発とそれを核とした新材料・材料加工プロセスの創生

千葉 晶彦  

Akihiko Chiba