行の研究者 32人

機能性高分子ハイブリッドナノ材料

前の画像
次の画像
特徴・独自性
  • Langmuir-Blodgett 法や浸漬法などボトムアップ的手法を基盤技術として利用し、様々なナノ材料の分子構造が示す表面・界面での相互作用を考慮することで、合目的的にナノ構造制御された光電子機能性高分子ハイブリッドナノ材料の開発を行っている。
実用化イメージ

0.4 nmで膜厚制御可能なSiO2超薄膜、発光型溶存酸素センサー、強誘電性高分子エレクトロニクスデバイスなど。

研究者

大学院工学研究科 応用化学専攻 環境資源化学講座(機能高分子化学分野)

三ツ石 方也  

Masaya Mitsuishi

身のまわりの排熱を利用した熱電発電デバイスの創製

前の画像
次の画像
特徴・独自性
  • 私達の身のまわりには多くの排熱源が存在します。例えば、オフィス機器や電化製品は絶えず100℃以下の熱を発生し続けていますし、自動車からは500℃近傍の熱が排出されています。これらの排熱の大部分は有効利用されることなく、「廃熱」となっているのが現状です。当研究室では、これら種々の温度域で発生する廃熱から高効率で電気を発生することができる熱電発電材料の開発を推進しています。
実用化イメージ

電子機器メーカーや自動車関連メーカーとの共同研究はもとより、温泉の温水と冷水を巧みに利用した「温泉発電」実現のための自治体との連携、人間の体温からの発電を目指す衣料メーカーなど多岐にわたる連携を目指しています。

研究者

大学院工学研究科 応用物理学専攻 応用材料物理学講座(機能結晶学分野)

宮﨑 讓  

Yuzuru Miyazaki

食品の機能性研究

特徴・独自性
  • 食品や農水産物、天然資源に由来する機能性成分について、精密な構造分析と、生体内での吸収代謝、物質運搬の制御、細胞機能の修飾、シグナル伝達の改変、遺伝子発現の調節など、分子機能の基盤的理解に向けた研究を進めている。特に細胞の老化や老化性の障害(認知症、癌、動脈硬化など)の予防に焦点をあて、食品油脂類、過酸化脂質、共役脂肪酸、ビタミンE、プラズマローゲン、カロテノイド、アミノ糖、カテキン類などの食品成分について、食品栄養学的研究を行っている。
  • 本研究に関して興味のある企業へ学術指導を行う用意がある。
実用化イメージ

研究者

未来科学技術共同研究センター 開発研究部 先端的食品バイオ研究拠点の構築

宮澤 陽夫  

Teruo Miyazawa

酸素センサー・プロリル水酸化酵素(PHD)を標的とした虚血障害治療薬の開発

前の画像
次の画像
特徴・独自性
  • 全ての生物は酸素を利用してエネルギーを作り出し、生命活動を維持しています。ひとたび酸素濃度が低下すると、その活動が著しく妨げられ、場合によっては死に至ります。局所の低酸素状態が関連する病気の代表例としては、虚血性心疾患、脳卒中、腎臓病などが挙げられます。私たちは、プロリル水酸化酵素(PHD)が低酸素状態を感知するセンサーとして機能していることに着目し、これを制御することで虚血障害を治療する医薬の開発を推進しています。
実用化イメージ

現在、いくつかのPHDを阻害する化合物を得ており、国内外の製薬メーカー等と連携して、非臨床試験から臨床開発へと進め、実用化を目指しています。

研究者

大学院医学系研究科 創生応用医学研究センター 分子病態治療学分野

宮田 敏男  

Toshio Miyata

過酷環境下で機能する化学イメージング・デバイスの開発

前の画像
次の画像
特徴・独自性
  • 強酸性の環境下で、水素イオンと塩化物イオンの濃度分布を、画像としてリアルタイム計測できるイメージング素子を開発した。pH の範囲は3.0 から0.5まで、塩化物イオン濃度は4M まで計測できる。従来、塩化物イオンに関しては、pH 6〜8の中性域で、0.01M以下の希薄溶液の濃度を計測できるだけであった。しかし、特殊なセンサー物質の探索や感応膜の作製方法を工夫することで、過酷環境下でも機能するデバイスの開発に成功した。
実用化イメージ

強酸性下で進行する金属の腐食現象など、各種化学反応の機構解明への応用が期待される。マイクロ流体チップへ組み込むことで、金属表面の触媒作用の解明などにも応用できるものと思われる。

研究者

大学院工学研究科 知能デバイス材料学専攻 材料電子化学講座

武藤 泉  

Izumi Muto

環境DNAを用いた海産魚の生態研究

前の画像
次の画像
特徴・独自性
  • 環境DNAは環境中に生物から放出されたDNAである。環境DNAの利点は、採水だけでサンプリングが完了することから、今までにない多地点・複数回のビッグデータを得られると事である。現在、河川や沿岸域で、海産魚の環境DNA関係を検出することで、対象種の在不在やバイオマスの推定を試みている。さらに本技術を用いて、生物多様性の評価や保全に向けた研究を展開している。
実用化イメージ

海産魚の漁獲量の減少は深刻であり、資源量管理を行う必要がある。本技術は、漁業者に対して漁獲量に関する提言や、回遊魚の回遊時期やその加入量の予測を提案し、効率的な漁業を行うための一助となり得る。

研究者

大学院農学研究科 生物生産科学専攻 水圏生産科学講座(水産資源生態学分野)

村上 弘章  

Hiroaki Murakami

機能性単分散ナノ粒子製造と実用化

前の画像
次の画像
特徴・独自性
  • 半導体、光触媒、誘電・圧電材料、磁性材料、塗料、化粧品、触媒などの機能性材料に利用するための、ナノ粒子や微粒子を液相で合成する。ナノ粒子や微粒子のサイズ、形態、構造、組成等をきわめて精密に制御し、それらの性質が均一な単分散粒子を調製する。企業が必要とする材料を提供するために、いわゆるテーラーメイドな粒子合成手法を開発している。
実用化イメージ

透明導電膜用インジウム-スズ酸化物(ITO)ナノ粒子、非鉛圧電アクチエーター用ビスマス系あるいはニオブ系ナノ粒子、誘電材料用チタン酸系ペロブスカイトナノ粒子、次世代光触媒用チタン系酸化物ナノ粒子、など多くの粒子を提供してきた。新規に開発した安価で比較的容易な液相大量合成法(ゲル- ゾル法等)により、粒子製造コストも抑えることができる。

研究者

国際放射光イノベーション・スマート研究センター 基幹研究部門 多元計測スマートラボ

村松 淳司  

Atsushi Muramatsu

有機−無機ナノハイブリッド材料の創製と応用

前の画像
次の画像
特徴・独自性
  • 液晶等高分子化合物と、金属、セラミックス等のナノ粒子のハイブリッド材料を、原子、分子レベルで構造、組成、表面特性を制御して、創製する。特に前者が有する高い加工性、適応性を、後者の特徴的な性質をカバーするような、相反機能(トレードオフ)を解消するようなナノハイブリッド材料を合成し、その応用の研究を実施している。この原子レベルでのハイブリッド化を可能にした手法によれば、無機ナノ粒子に温度応答による流動性という新たな性質を付加することに成功している。この手法を産業界で活用した企業や団体との共同研究を希望する。
実用化イメージ

研究者

国際放射光イノベーション・スマート研究センター 基幹研究部門 多元計測スマートラボ

村松 淳司  

Atsushi Muramatsu

レドックス制御によるアルツハイマー病予防の試み

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 近年、アルツハイマー病をはじめとする加齢に伴う神経変性疾患は酸化ストレスによる細胞障害と神経炎症を基盤としていることが明らかにされている。これまでに我々は、転写因子NRF2による酸化ストレス応答の強化が多くの疾患を改善することを見いだしてきた。NRF2は強力な抗炎症作用も有することが明らかになったことから、NRF2活性化によるアルツハイマー病予防の可能性を検討している。
実用化イメージ

一部の野菜にはNRF2 を活性化する成分が含まれている。そこで、NRF2活性化作用を有する成分を増やすための作物品種改良、サプリメント開発などの事業に対して、細胞やマウスを用いた検証系を提供できる。

研究者

大学院医学系研究科 医科学専攻 生体機能学講座(医化学分野)

本橋 ほづみ  

Hozumi Motohashi

X線位相イメージングによる高感度医用診断装置の開発

前の画像
次の画像
特徴・独自性
  • 通常のX線透視撮影は生体軟組織などのX線をあまり減衰させない構造に対して明瞭なコントラストを生成しない。X線が物質を透過するとき、わずかに屈折により曲げられる。通常のX線透視撮影では、X線は直進していると近似しているが、この屈折を検出・画像化することで、軟組織に対する感度が大幅に改善される。このような撮影を、X線透過格子を用いるX線Talbot 干渉計あるいはX線Talbot-Lau干渉計により実現している。
実用化イメージ

すでに、軟骨描出能を使ったリウマチ診断、および、乳がん診断(マンモグラフィ)への適用を目的とした医用機器開発を進めている。他の医用用途が開拓できれば、新たな産学連携が構築できると期待している。

研究者

多元物質科学研究所 計測研究部門 量子ビーム計測研究分野

百生 敦  

Atsushi Momose

X線位相イメージングによる高感度非破壊検査装置の開発

前の画像
次の画像
特徴・独自性
  • 通常のX線透視撮影は軽元素からなる高分子材料などの低密度材料に対して明瞭なコントラストを生成しない。しかし、X線が物質を透過するとき、わずかに屈折により曲げられることを検出・画像化することで、そのような物質に対する感度が大幅に改善される。X線透過格子を用いるX線Talbot 干渉計あるいはX線Talbot-Lau干渉計によりこれが実験室で実施できるようになった。高感度三次元観察を可能とするX線位相CT も実現している。
実用化イメージ

工業製品検査や保安目的のX線非破壊検査を、従来法では適応が難しかった対象に拡張できる。X線マイクロCT装置への位相コントラストモード付加、生産ラインでのX線検査装置の高度化などが開発目標となる。

研究者

多元物質科学研究所 計測研究部門 量子ビーム計測研究分野

百生 敦  

Atsushi Momose

  • 1
  • 2