行の研究テーマ(47

バイオ材料とナノテクノロジーに基づくセンサ・電子デバイスの開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • エレクトロニクス分野で培われてきた技術を応用して、健康で安全な社会を発展させ、私たちの生活の質を高めるようなデバイスの開発研究を進めています。例えば、半導体のセンサインターフェイスとしての特性を、薬物検出やスクリーニングアッセイなどの生化学・医療用途に利用する研究や、生きた細胞を使って神経回路を作り上げ、脳の機能解析を支援する新規技術の開発を進めています。
実用化イメージ

シリコンチップ上に形成した人工細胞膜にイオンチャネルタンパク質を埋め込むと、極限まで規定された環境下でその機能や薬理応答を調べることができます。この技術は、新薬候補化合物の高感度な迅速検出法につながります。

研究者

電気通信研究所

平野 愛弓  

Ayumi Hirano

バイオスティミュラント(植物調節 剤・農薬)の探索

前の画像
次の画像
概要

農薬の代替であるバイオスティミュラントの開発を行います。植物の活性を調節するイオン輸送体などを標的分子とする化合物を探索します。植物に、耐乾燥性、耐塩性、光合成機能の向上、成長調節機能の人為的な強化を目指しています。

従来技術との比較

化学、農薬、食品、資材業界の専門家の協力と連携によって、より高性能で田畑で効果のあるバイオスティミュラントや天然の農薬の基盤化合物を探索します。

特徴・独自性
  • 農薬の代替であるバイオスティミュラントの開発を行う.植物の活性を調節するイオン輸送体などを標的分子とする化合物を探索する.植物に,耐乾燥性,耐塩性,光合成機能の向上,成長調節機能の人為的な強化をめざす.
実用化イメージ

候補化合物を,化学,農薬,食品,資材業界の専門家の協力と連携によって,より高性能で田畑で効果のあるバイオスティミュラントや天然の農薬として発展させることができればと思っています.

研究者

大学院工学研究科

魚住 信之  

Nobuyuki Uozumi

バイオ燃料生産に適したイネの開発研究

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • セルラーゼ遺伝子を用いたバイオ燃料生産に適したイネの開発研究を行っています。収穫前にセルラーゼを高発現させ細胞壁の部分分解を行えば、収穫後の稲わらの糖化性が向上するのではないかと考えました。まず、セルラーゼを恒常的に高発現するイネを作成したところ、稲わらの糖化性は向上しましたが、形態異常や不稔が観察されました。そこで、老化時期特異的にセルラーゼを高発現させたところ、形態や稔性は正常で稲わらの糖化性が向上しました。
実用化イメージ

未利用稲わらをバイオマスとして有効利用できます。この技術は他の植物に応用可能です。また、改良されている前処理や糖化・発酵微生物と組み合せることによりさらにバイオ燃料生産の効率化が図れます。

研究者

大学院農学研究科

伊藤 幸博  

Yukihiro Ito

バイオマス由来の潜熱蓄熱材

前の画像
次の画像
概要

バイオマス由来の潜熱蓄熱材
https://www.t-technoarch.co.jp/data/anken_h/T19-339.html

従来技術との比較

特徴・独自性
  • 潜熱蓄熱材(PCM:PhaseChangeMaterial)を内包したマイクロカプセルは潜熱蓄熱材として建物内外壁や衣料品等に利用されています。一方、PCMとして使用される石油資源由来のパラフィンや高価な脂肪酸エステルに替わる安価で環境調和型のPCMが求められています。本発明は、パーム油等に含まれる脂肪酸や油脂をイオン交換樹脂触媒の存在下でアルコールと反応させることにより、PCMとして有用な脂肪酸エステル混合物を製造する方法を提供します。
実用化イメージ

以下のような社会実装への応用が想定されます。
・原料の種類や混合比によって熱化学特性を制御できます。
・再生可能資源由来の材料の安価な製造が期待されます。

研究者

大学院工学研究科

廣森 浩祐  

Kousuke Hiromori

バイオミメティック材料・自己組織化

特徴・独自性
  • 当研究室では、㈰生物から得られたヒント(材料デザイン)を基に、㈪ナノ材料や機能性高分子などの合成物を、㈫自己組織化や自己集合という低エネルギープロセスで形作ることで、生物に学び(Biomimetic)、生物と融合し(Biohybrid)、最終的には人工材料と生物デザインにより生物を超える(Metabio)材料の作製を目指しています。
実用化イメージ

細胞培養・分離・イムノアッセイ等のバイオ分野、構造材料・接着材料等の高分子分野、ナノ粒子等のナノ材料分野、燃料電池・金属空気電池等のエネルギー分野の企業との産学連携

研究者

高等研究機構材料科学高等研究所

藪 浩  

Hiroshi Yabu

バイオものづくりによるグリーンクロステック研究

前の画像
次の画像
概要

ソルガムは本州でも約4〜5m程度まで成長する世界生産量第4位のイネ科植物である。また、ソルガムは乾性と湿性のものがあり、湿性からは糖蜜が搾れる。そこで福島国際研究教育機構(F-REI)プロジェクトの一環として、福島浜通りの営農休止地においてソルガムを栽培し、搾り汁と搾り粕をそれぞれカスケード活用することでカーボンニュートラルなグリーンケミカル(トランスアコニット酸、ブタノール)を製造する。

従来技術との比較

再生航空燃料(SAF: Sustainable Aviation Fuels)の製造では、微生物によってCO2とH2からエタノールを生合成し、化学反応によってエチレンを合成した後、重合・水素付加してSAFを製造している。本技術では、ソルガム搾り粕などリグノセルロースを原料として、微生物変換プロセス(Consolidated Bioprocessing)によってバイオブタノールの増産化が可能になる。

特徴・独自性
  • 植物は光合成によってCO2を吸収・固定し、さまざまな形の炭化水素を蓄積します。このリグノセルロースを完全利用することができれば、カーボンニュートラルを実現することができます。リグノセルロースの分解・糖化は当研究グループがゲノム解読した嫌気性セルロソーム生産菌Clostridium cellulovoransを活用し、この菌にブタノール発酵Clostridium属細菌を組み合わせることで1つのタンク内でリグノセルロースからブタノールを取得することができます。
実用化イメージ

本微生物変換プロセス(CBP)が事業化できれば、得られたグリーンなブタノールからSAF 製造が可能になり、国内生産ができれば自動車・航空業界、物流産業やインバウンドを含む観光産業にも貢献できます。

研究者

グリーン未来創造機構

田丸 浩  

Yutaka Tamaru

培養筋細胞を運動させる

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 培養ディッシュ上で活発に収縮活動する培養筋細胞系を作製しました。既存の培養系で得られる培養筋細胞は、収縮能力が全く未熟であるため、代謝能力も貧弱で、マイオカイン分泌もありませんでした。「運動できる培養筋細胞」を利用することによって、これまで動物実験に依存していた骨格筋の研究を培養細胞系へと移行させることが可能になります。
実用化イメージ

筋肉細胞とその運動効果を治療標的とした新たな薬剤の探索が飛躍的に加速されるものと期待されます(2型糖尿病治療・筋萎縮予防・運動効果の増強・筋の健康維持を促す薬剤のスクリーニングなど)。

研究者

大学院医工学研究科

神崎 展  

Makoto Kanzaki

破骨細胞が関与する疾患の予防剤又は治療剤

概要

従来技術との比較

特徴・独自性
  • 我々は破骨細胞の活性を指標としたライブラリースクリーニングの研究により、ニコチン性アセチルコリン受容体(nAChR)の阻害薬が破骨細胞分化を抑制することを明らかにし、その中でも特にα7-nAChR の拮抗作用をもつmethyllycaconitine(MLA)等の選択的拮抗薬が、破骨細胞分化を効果的に抑制することを見出しました。本シーズは、この知見に基づいており、破骨細胞分化抑制剤、破骨細胞による骨吸収抑制剤、骨再生促進剤、および骨吸収性疾患の予防または治療剤等への発展が期待されます。
実用化イメージ

骨粗鬆症、関節リウマチにおいて骨吸収を阻害する薬剤の開発に貢献することが期待されます。また、歯科領域では、歯周病における炎症性骨吸収の治療薬や、抜歯後の歯槽骨吸収を抑制する治療に貢献する可能性が考えられます。

研究者

大学院歯学研究科

江草 宏  

Hiroshi Egusa

発火や破裂の危険が少ない安全な電池の実現に貢献する

概要

小さな力で容易に伸縮する高分子電解質
https://www.t-technoarch.co.jp/data/anken/T19-753.pdf

従来技術との比較

従来の有機電解質は発火の危険があった。一方高分子化することで固体電解質化した高分子電解質はイオン伝導性が低かった。

特徴・独自性
  • 室温で10-4 S/cmクラスのLiイオン伝導度を持つ高分子電解質の合成に成功。
  • ミクロンサイズの多孔膜と光架橋性ポリエチレングリコール(PEG)の複合化により室温での高い性能発現とLiイオンの拡散を制御。
  • 広い電位窓(4.7 V)と高いLiイオン輸率(0.39)を実現。
  • 多孔膜を電解質中に形成することでデンドライト形成の抑止効果にも期待。
実用化イメージ

Liイオン電池用の安全な電解質として利用可能。

研究者

高等研究機構材料科学高等研究所

藪 浩  

Hiroshi Yabu

犯罪予防の促進要因の検討

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 犯罪者は誰を狙い、どこで犯行に及ぶのでしょうか。また、犯罪の被害に遭わないようにするためには、我々はどのようなことを心掛け、どのような場所を避けると良いのでしょうか。あるいは、環境を整えることで犯罪を防ぐことは可能なのでしょうか。こうした点を心理学的な手法を用いて研究し、犯罪からの安全や安心を目指すための方策を考えています。
実用化イメージ

犯罪からの社会の安全や安心はもとより、災害、産業リスクなどからの安全・安心を提供するような業界との産学連携を想定しています。他にも、心理学的手法を使い人間の特徴を把握した上で、その特徴に合わせた安全で安心な製品作りなどが考えられます。お気軽にお問い合わせください。

研究者

大学院文学研究科

荒井 崇史  

Takashi Arai

半導体集積回路技術とヘルステック応用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 半導体工学と神経工学を基盤として、生体の構造と機能の理解に基づいたヘルステック用集積システムの研究開発を行っています。また、三次元集積回路(3DIC)技術及びAI 半導体チップの研究開発にも力を入れています。近年の研究項目は次の通りです。
  • ・三次元積層人工網膜チップ、専用設計した血流センシングチップとリザバーコンピューティングを組み合わせたヘルステックデバイス
  • ・AI の頭脳となる三次元積層AI 半導体チップの研究開発
  • ・TSV(シリコン貫通配線)を用いた三次元集積化技術のアドバンテージを最大限に活かしたアナログ
  • ・デジタル三次元集積回路設計
実用化イメージ

3D-IC 設計とチップレベル三次元積層を本学施設で長年実施して技術を蓄積し、国内外の企業・研究機関と三次元集積化技術や生体応用集積システムに関する共同研究を積極的に行っています。3D/ チップレットの設計技術、装置・材料を含む半導体プロセス技術に関して産学連携を行い、量子・AI コンピューティングや次世代ヘルステックの研究開発プラットフォーム構築を目指したいと考えています。

研究者

大学院医工学研究科

田中 徹  

Tetsu Tanaka

半導体における電子スピン波を活用した多重情報処理基盤の確立

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 電子スピンが回転しながら空間伝搬するスピンの「波」を新たな情報担体に利用する学理構築と半導体産業の更なる発展に向けた次世代情報処理基盤を目指します。半導体の電子スピン波は長い寿命と優れた制御性を兼ね備え、光情報通信とも相性が良い特徴を有します。よって、半導体素子のスケーラビリティと融合させることで、既存技術の延長線上にない方法で、膨大な情報量を伝送・処理できる固体スピン波情報プラットフォームを構築します。
実用化イメージ

企業とこれまでに共同研究を実施し、特許11件・論文9件として纏めてきました。高感度センサや不揮発メモリ・半導体関連企業との共同研究と共に、将来的にはベンチャー企業を立ち上げたいと考えていますので、様々なステークホルダーの皆様と積極的な協働を進めていければと考えています。

研究者

大学院工学研究科

好田 誠  

Makoto Koda

半導体量子構造の伝導特性制御と超高感度NMR

前の画像
次の画像
特徴・独自性
  • GaAs やInSbの量子構造の伝導特性を制御し、核スピンの偏極状態を操作することで、二次元構造やナノ構造に適用できる超高感度NMR技術を確立した。さらに、InSb 量子構造においてアルミナ絶縁膜を用い、理想的なゲート操作を実現した。また、核スピンが感じる雑音特性を周波数依存性も含め測定する一般化された横緩和時間の考え方を提案、実証した。この概念は核スピンを用いるすべての計測に大きな変化をもたらすことが期待される。
実用化イメージ

良好なゲート制御を用いた次世代InSbデバイス。一般化された横緩和時間を利用した様々な核スピン計測、核磁気共鳴。高感度NMR は物性研究への応用が中心であるが、量子情報処理への貢献も見込まれる。

研究者

高等研究機構先端スピントロニクス研究開発センター

平山 祥郎  

Yoshiro Hirayama

半導体を活用した次世代情報処理基盤の創生

前の画像
次の画像
概要

<研究内容>
半導体において、電子のスピンを高度に制御・活用し初めて可能になる新機能や素子応用に関する研究を進めています。特に外部磁場や磁性体を必要とせず、半導体だけを用いてスピンを自由に操る原理を生み出し(右図上段)、既存半導体産業と極めて整合性の良いスピン機能の確立を目指しています。さらに、電子スピンが回転しながら空間伝搬するスピンの「波」を新たな情報担体に利用した新概念演算や量子情報に資する基礎学理の構築を目指します。本研究では半導体における電子スピン波を情報担体に活用する研究を進めますが、最終的には光偏波・電子スピン波・マグノンを活用することで情報基盤全体で波動性を持った情報担体を操作できる基盤を構築していきたいと考えています。
<代表的な共同研究・競争的資金等の課題>
波動性情報担体を用いた固体多重情報基盤の創出(代表者:好田誠)JST戦略的創造研究推進事業,2022年12月-2027年3月.電子スピン波を用いた革新的情報処理・伝送の創生(代表者:好田誠)科研費基盤研究(A)2021年4月-2026年3月.

従来技術との比較

特徴・独自性
実用化イメージ

研究者

大学院工学研究科

好田 誠  

Makoto Koda

東アジアにおける仏教建築様式史の再構築と、歴史的建造物および歴史資料の保存・活用研究

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 建築史学:東アジアにおける禅院の建築と山水を中心とした建築・都市・庭園に関する研究。歴史的建造物調査や、学際的研究会の主催を通した、仏教建築様式史の再構築。
    文化財学:歴史的建造物の保存と再生に関する実践的研究。過去の評価と未来への継承 時間・時間のリデザイン。歴史的建造物および歴史資料の、国宝・重要文化財・登録有形文化財としての評価を通した、国益に直結する人文科学的・工学的研究。
実用化イメージ

歴史的建造物および関連する歴史資料を文化財として評価するにあたり、文化庁・奈良文化財研究所・文化財建造物保存技術協会・宮城県・仙台市などの国・県・市の関係諸機関と連携。

研究者

大学院工学研究科

野村 俊一  

Shunichi Nomura

光を使って表面・界面の化学反応を観る

概要

放射光X線・赤外光・超短パルスレーザーといった様々な光源を用いて、表面や界面の反応プロセスをリアルタイムで観測し、そのメカニズムを明らかにしています。近年、高輝度軟X線を用いたピコ秒時間分解X線光電子分光システムや雰囲気X線光電子分光システムを開発し、触媒表面・界面の分子や光励起キャリアのオペランド計測に成功しています。

従来技術との比較

触媒や電池などの物質・エネルギー変換の反応場はガスや液体に接しており、真空中での計測を前提とした従来の表面科学手法では直接観測することは困難でしたが、反応場を反応中に直接計測するオペランド計測が可能になりました。

特徴・独自性
  • 触媒・光触媒、燃料電池、リチウムイオン電池などの表面・界面の計測
  • NanoTerasuでは軟X線に加えてテンダーX線~硬X線を用いた新規オペランド計測法を新たに開発
  • 反応場を反応中に直接計測可能な「オペランド」計測の開発
実用化イメージ

触媒・光触媒、燃料電池、リチウムイオン電池など実用材料における表面機能高度化や、環境技術、C1グリーンケミストリー物質変換技術開発に役立てたいと考えています。

研究者

国際放射光イノベーション・スマート研究センター

山本 達  

Susumu Yamamoto

光を利用したヘルスケア・無侵襲診断システムの開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 微弱な光を照射するだけで、血糖やコレステロールなどの血中成分の分析が可能な、日々の健康管理のためのシステムや、息をセンサに吹き込むだけで代謝機能などの診断が可能な装置、また血液のみから複雑な前処理なしに脳腫瘍などの迅速診断が可能な手法などについて、基礎的および実用システム実現のための実践的研究を行っています。
実用化イメージ

医療機器メーカーをはじめ、本分野への新規参入を検討している電子機器、通信装置、および計測機器メーカーなどが連携先として考えられます。

研究者

大学院医工学研究科

松浦 祐司  

Yuji Matsuura

ビジュアルサーボ顕微鏡

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 蛍光顕微鏡は細胞内イオンの定量的可視化や光学顕微鏡の限界を超える観察などに必須の道具です。生物の「行動と神経活動の相関」を計測したい場合、現状では、ターゲットの神経細胞を機械的に固定するか麻酔するかしか方法がありません。また、これらの方法では細胞や生物が動かないので、「行動」を計測したことにはなりません。私たちは、動く生物を追いかけて神経細胞の活動を蛍光観察する手法を開発しました。
実用化イメージ

観察しているターゲット細胞群の蛍光強度を観測しながら、細胞群の動き(3次元移動と変形)を自動でキャンセルする画像処理手法を開発しました。「生物の運動」と「動く神経細胞活動」を同時に計測できる技術を活用したい企業との共同研究を希望します。

研究者

大学院情報科学研究科

橋本 浩一  

Koichi Hashimoto

非水浸超音波可視化手法

前の画像
次の画像
特徴・独自性
  • 水と被検査物との間に固体薄膜を挿入し、薄膜と被検査物との界面に負圧力を付与した状態で高周波数超音波を伝達する独自のドライ超音波法を開発しています。当該原理に基づき試作したドライ超音波顕微鏡により、これまで実現されていなかった水非接触下における電子デバイス内部の高分解能可視化に成功しています(図1)。さらに音響整合層として機能する高分子薄膜を挿入することで、従来水没時よりも高画質な内部画像を得ることも可能にしました(図2)。また、超音波が薄膜を通過する際に生じる音響共鳴現象を利用して、高分子フィルムの音響物性値を測定(図3)するなど、薄物材料の高精度な非破壊評価が可能です。この技術を産業界で活用したい企業や団体との共同研究を希望します。
実用化イメージ

研究者

大学院工学研究科

燈明 泰成  

Hironori Tohmyoh

微生物ゲノム情報を用いた抗菌剤創造薬システム

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 農業・医療分野の動植物感染菌対策に必要な抗菌剤の開発においては、効率的創薬手法の確立が求められており、我々は微生物ゲノム科学を活用して連続的に新規抗菌剤を創出する新技術体系を確立しました。新規創薬パイプラインでは、様々な基準抗真菌剤に対する糸状菌の網羅的な転写応答プロファイル解析から、創薬標的候補遺伝子の機能解析と候補化合物の系統的分別探索に有効な、1) 細胞システム毎(エネルギー系、細胞膜生合成系、細胞壁系、細胞骨格系等、シグナル伝達系)のレポーターアッセイ系、2) 化合物転写応答- 表現型データベースによる統計解析を組み合わせた新剤評価系を構築して産業運用しています。現在、化合物探索の共同開発が可能な状態です。
実用化イメージ

研究者

大学院農学研究科

阿部 敬悦  

Keietsu Abe