行の研究テーマ(105

原子力・核融合材料

特徴・独自性
  • 原子力や将来の核融合炉に用いられる機能・構造材料の開発と評価に関する研究を進めている。特に、メカニカルアロイング法による分散強化合金の創製や、ナノインデンテーション法を駆使した超微小試験技術に関して独自の方法を開発している。
実用化イメージ

原子力業界や材料業界

研究者

金属材料研究所 材料設計研究部 原子力材料工学研究部門

笠田 竜太  

Ryuta Kasada

現場で、目視で、金属材料への水素侵入をリアルタイム検出

前の画像
次の画像
概要

金属材料に水素が侵入すると、材料の機械的特性が低下し脆性破壊することがある。(水素脆化)水素脆化の発生を事前に予測するためには、材料への水素侵入を検出する必要がある。本技術では、対象となる金属材料に「水素と反応して色が変わる高分子センサー」を成膜することで、材料に侵入した水素を目視で発見できる。高分子センサーは安価かつ容易に成膜可能なため、大型で形状が複雑なインフラ設備にも適用できると期待される。

従来技術との比較

従来、金属中の水素検出には大型で高価な装置を必要としていたため、現場における水素検出は困難であった。本技術の水素センサーは水素を視認可能にするため、既存設備に成膜するだけで水素の侵入を発見できる。

特徴・独自性
  • ・金属材料に侵入した水素をリアルタイムで可視化できる。
  • ・金属の腐食に伴い侵入した微量の水素でも検出できる。
  • ・安価かつ容易に成膜可能なセンサーを使用するため、既存の大型設備にも適用できる。
  • ・材料に侵入した水素を発見することで、水素脆化の防止と材料の長寿命化が期待される。
実用化イメージ

本技術によって、大型のインフラ材料に侵入した水素を容易に検出できる。既存設備でも、材料表面に水素センサーを成膜すれば材料に侵入した水素を目視で発見できるため、メンテナンスコストの削減が期待できる。

研究者

金属材料研究所 材料設計研究部 耐環境材料学研究部門

柿沼 洋  

Hiroshi Kakinuma

原料として用いる脂肪酸やアルコールの種類や混合比により熱化学特性を制御可能

概要

バイオマス由来の潜熱蓄熱材
https://www.t-technoarch.co.jp/data/anken/T19-339.pdf

特徴・独自性
実用化イメージ

研究者

大学院工学研究科 化学工学専攻 プロセス要素工学講座(反応プロセス工学分野)

廣森 浩祐  

Kousuke Hiromori

コーティング及び界面修飾に関する分子動力学アプローチ

特徴・独自性
  • 固・液の親和性や濡れ、熱抵抗、分子吸着等のメカニズムを解明し、コーティングや表面修飾などの技術によりこれを制御するための基礎研究を、分子動力学シミュレーションを主な手法として進めている。
  • 熱・物質輸送や界面エネルギー等の理論をバックグラウンドとして、フォトレジストのスピンコーティングからSAM(自己組織化単分子膜)や各種官能基による親水性・疎水性処理まで様々なスケールの膜流動・界面現象を対象としている。また、主に液体を対象として、その熱流体物性値を決定する分子スケールメカニズムや、所望の熱流体物性値を実現するための分子構造に関する研究を行っている。これらの研究に関して興味のある企業との共同研究や学術指導を行う用意がある。
実用化イメージ

研究者

東北メディカル・メガバンク機構 予防医学・疫学部門

小原 拓  

Taku Obara

高圧ガスタービン環境における燃焼評価と気流噴射弁の技術開発

前の画像
次の画像
特徴・独自性
  • 燃焼は、温度、濃度、速度、高速化学反応といった多次元のダイナミックスが複合した複雑な過程です。当研究室は、高圧ガスタービン環境を実現できる世界的にも希な高圧燃焼試験装置を有し、高温高圧下の燃焼実験ならびにレーザー分光計測に独自性があります。航空宇宙推進系のみならず各種高圧化学反応炉の設計技術と安全評価技術、新燃料の燃焼技術、さらには高圧下の液体微粒化技術の研究開発にも取り組んでいます。
実用化イメージ

航空宇宙、自動車、電力、工業炉、化学プラント業界における、多様な燃料に対するガスタービン燃焼と評価、高圧噴霧生成と制御、高圧下のレーザー燃焼診断、化学反応炉の安全設計等に関する連携が可能です。

研究者

流体科学研究所

小林 秀昭  

Hideaki Kobayashi

高圧熱水処理による未利用資源の有効活用

前の画像
次の画像
特徴・独自性
  • 食料産業分野から排出される未利用資源を原料とし、従来広く用いられる発酵技術に変えて、高圧熱水処理法という新たな手法により、多様な機能を発揮する生物素材を製造する。高圧熱水は誘電率が低くイオン積が大きいため、常温常圧の水とは異なる溶媒特性を持つ。我々は、未利用水産物のモデルとして魚皮由来のゼラチンを選び、160〜 240℃の高圧熱水処理を施すことにより、タンパク質を分解し、分解産物について有用性を評価した。
実用化イメージ

高圧熱水処理による部分分解産物を、米、穀類、野菜、果実、花卉類等の農業分野、養殖水産業、畜産業あるいは様々な食品工業において有効活用せしめ、生産性の向上と競争力の高い商品開発に結びつけさせる。

研究者

大学院農学研究科 農芸化学専攻 食品天然物化学講座(テラヘルツ食品工学分野)

藤井 智幸  

Tomoyuki Fujii

高圧力下での合成,焼結

前の画像
次の画像
特徴・独自性
  • 川井型マルチアンビル装置およびキュービック装置を使用して,高温高圧力下で材料合成および焼結を行う.20 GPa, 2000 Kまでは容易に行える.25 GPa, 2300 Kまで可能.
実用化イメージ

超硬材料,磁性材料,高温超伝導体などで高圧合成を必要とする物質.

研究者

大学院理学研究科 地学専攻 地球惑星物質科学講座

鈴木 昭夫  

Akio Suzuki

高温高圧条件でのアミノ酸のペプチド化と新規炭素繊維

前の画像
次の画像
特徴・独自性
  • 生物体内では酵素などの作用でアミノ酸がペプチド化される。掛川研究室では無水、高温高圧環境下で触媒なしにアミノ酸の高重合度ペプチド生成に成功してきている。重合が難しいとされていたグリシンでは11量体、アラニンでは5量体など重合度の世界記録を作ってきている。アラニン5量体は、クモの糸に代表される重要な硬質「炭素繊維」であり、本研究は新規炭素繊維開発に有効と考える。
実用化イメージ

本研究を応用することで、切れないペプチド繊維(アラニンペプチド)と柔軟性のあるペプチド繊維(グリシンペプチド)を組み合わせることで、固くて伸びる新規炭素繊維を作り出せる可能性がある。

研究者

大学院理学研究科 地学専攻 地球惑星物質科学講座

掛川 武  

Takeshi Kakegawa

高温高圧水中での化学反応を用いたプロセス開発、超/亜臨界流体抽出技術

前の画像
次の画像
特徴・独自性
  • これまでの研究はほとんどが水熱技術(超/亜臨界水技術など)に関連しており、超臨界流体(CO₂)と亜臨界流体(DME)の抽出技術、無機材料の合成、石炭化学、バイオマス変換、微細藻類の抽出、廃棄物のリサイクルなど多岐にわたる。また、さまざまな化学工学的応用の経験もあります。現在はリチウムイオン電池と廃プラスチックのリサイクルと化学実験の自動化と知能化に関する研究に取り組んでいる。
実用化イメージ

1. 廃リチウムイオン電池のリサイクルと貴金属の回収
2. 連続水熱装置による廃プラスチックのリサイクル
3. 非効率に利用される炭素系未利用固体廃棄物から高付加価値製品を製造する技術開発

研究者

大学院工学研究科 附属超臨界溶媒工学研究センター システム開発部

鄭 慶新  

Qingxin Zheng

高温超伝導テープおよびケーブルの着脱可能な接合法の研究

前の画像
次の画像
特徴・独自性
  • 当研究室では高温超伝導テープおよび導体の着脱可能な接合法の研究を行っている。接合方法としては機械的バットジョイント、および機械的ラップジョイント(図1)を採用している。これら機械的接合法では、接合部に与える圧縮力を解除することで、着脱が可能となる。高温超伝導体は比較的高温(液体窒素温度域)で使用することで、比熱を大きくでき、ある程度の抵抗発熱を許容できる。局所的な高熱流束によるクエンチ防止には、金属多孔質体を用いた極低温冷媒の熱伝達促進技術(図2)を用いる。
  • 本研究はこれまで想定されてこなかった高性能で短尺の高温超伝導線を利用した組立・分解・補修が可能な各種超伝導機器の開発可能性を新たに示すものであると考えている。すなわち、アプリケーション開発側から材料開発へのアプローチを可能とし、高温超伝導体産業の活性化を促せる研究であり、この技術を産業界で活用したい企業や団体との共同研究を希望する。
実用化イメージ

研究者

大学院工学研究科 量子エネルギー工学専攻 エネルギー物理工学講座(核融合・電磁工学分野)

橋爪 秀利  

Hidetoshi Hashizume

高温反応場を用いた機能材料の創製と熱物性計測法の開発

前の画像
次の画像
特徴・独自性
  • 金属・無機系材料の創製と高温融体の熱物性計測に取り組んでいます。現在、環境、医療、バイオ、情報分野での幅広い応用が期待されている窒化物半導体について独自の発想に基づいた新たな結晶成長プロセスの開発を行っています。また、当研究室で開発した超高温熱物性計測システムを一般開放し、材料開発の数値シミュレーションに必要な比熱、熱伝導率や表面張力など種々の熱物性測定のニーズに応えています。
実用化イメージ

鉄鋼・金属系素材、半導体産業:結晶成長、溶接、鋳造、凝固などのプロセス開発
 航空宇宙産業:ロケット・航空機用エンジンおよび構成部材の評価
 エネルギー産業:原子炉・核融合炉用材料、発電タービン用材料の評価

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 高温材料物理化学研究分野

福山 博之  

Hiroyuki Fukuyama

光学を基礎としたマイクロ光学デバイスの設計・製作,特に光応用のMEMSや光センサ

前の画像
次の画像
特徴・独自性
  • 光センサや光学系の設計等、光工学を基礎として、機械の運動測定やレーザーを用いた分光や非接触測定などの技術を研究している。また、半導体微細加工を利用して、集積型のマイクロ光センサ、マイクロ機械を組み合わせた光スキャナー、光通信用のスイッチなどの可変光デバイスを研究している(光MEMS)。
実用化イメージ

光学設計、光計測産業、半導体マイクロマシニングおよびMEMS などに関連した産業など。

研究者

未来科学技術共同研究センター 開発研究部 安全・安心マイクロシステムの研究開発

羽根 一博  

Kazuhiro Hane

高加工性を有する新型銅系形状記憶合金

前の画像
次の画像
特徴・独自性
  • 実用形状記憶合金ニチノールと同等の形状記憶および超弾性特性を有し、約2倍の加工性を持つCu-Al-Mn系形状記憶合金を開発しました。この合金はニチノールの数分の1のコストで作製することができ、形状記憶処理に金型が不要なため、線以外の複雑な形状への加工・成形が可能です。最近、この合金を利用して着脱容易な「巻き爪矯正具」を開発・製品化し、2011 年から販売を始めました。
実用化イメージ

直径や厚さが0.1 〜 20mm もの線、棒、板材でも6%以上の優れた超弾性が得られる技術を確立し、現在制震部材への応用研究を進めています。医療、建築にかかわらず本合金の特性を利用したい用途があったら是非ご連絡下さい。

研究者

大学院工学研究科 金属フロンティア工学専攻 創形創質プロセス学講座(材料組織制御学分野)

貝沼 亮介  

Ryosuke Kainuma

高機能カーボンナノチューブーアルミナ複合材料の開発

前の画像
次の画像
特徴・独自性
  • 分散が困難とされていた、カーボンナノチューブ(CNT) を配合したセラミック複合材料の開発に関して、CNT の剛性ならびに表面性状を制御することにより均一分散させたCNT/アルミナ複合材料の作製に成功した。さらに、無加圧焼結によりアルミナ単味の強度特性を大きく超える複合体を作製できている。これを背景に、試作したCNT/ アルミナ複合材料の機械・電気的特性の向上と実用化に向けた基礎研究を行っている。
実用化イメージ

トライボ応用、強度と耐摩耗性が要求される人口股関節等の生体材料、電気ひずみ効果を利用したマイクロアクチュエータ、数GHz 〜数10GHz 程度の周波数帯における電波吸収材料への応用展開が期待される。

研究者

未来科学技術共同研究センター 開発研究部 強靭化と高容量化を両立させた環境配慮型蓄電体の開発に関する研究

橋田 俊之  

Toshiyuki Hashida

高強度鋼の水素脆化

前の画像
次の画像
特徴・独自性
  • 高強度鋼の水素脆化特性について、水素が高強度鋼の機械的特性に及ぼす影響と腐食反応による環境からの水素侵入の両面から研究に取り組んでいます。主な研究内容は、各種高強度鋼の水素脆化による破壊の機構解明や、電気化学的手法を用いた種々の環境における腐食に伴う水素の侵入挙動の検討、鋼中の水素可視化手法、水素脆化特性評価法の提案などです。
実用化イメージ

高強度鋼材料の水素脆化特性とそれに及ぼす金属組織や水素トラップ物質の影響や、材料の特性や形状に応じた水素脆化評価法の提案、新規な水素可視化手法の開発など水素脆化分野での共同研究。

研究者

金属材料研究所 材料設計研究部 耐環境材料学研究部門

秋山 英二  

Eiji Akiyama

高空孔率の均一な空孔を備えたMg2Si膜

概要

電気伝導率はそのままに、熱伝導率を低減させたMg2Si熱電変換膜
https://www.t-technoarch.co.jp/data/anken/T20-338.pdf

特徴・独自性
実用化イメージ

研究者

多元物質科学研究所 無機材料研究部門 無機固体材料化学研究分野

山田 高広  

Takahiro Yamada

口腔内設置型生体モニター・治療装置

前の画像
次の画像
特徴・独自性
  • 高齢者や闘病生活時の全身状態を健康管理センターで集中的にモニタリングし、必要に応じて遠隔操作によって薬剤投与などの治療行為を行う健康支援システムを提供します。本システムは、口腔内設置の床義歯又はマウスピースに各種生体センサー及び体姿勢や運動を検出する活動センサー、データを無線方式で管理センターに送受信する通信機、管理センターからの指令に基づいて作動する薬剤投与機構等から構成されます。
実用化イメージ

義歯等に組み込むために違和感なく導入でき、入院中の患者の健康管理から一人暮らしの高齢者の健康支援までを支援する機器です。これからの高齢社会に必須の機器となります。

研究者

大学院歯学研究科 歯科学専攻 地域共生社会歯学講座(予防歯科学分野)

小関 健由  

Takeyoshi Koseki

口腔内組織再生のための遺伝子導入を応用した治療開発

概要

カリウム保持性利尿剤であるアミロライド誘導体を、オリゴアルギニンで就職したリン酸カルシウムを用いた遺伝子導入の際に使用することにより、骨関連細胞に対する遺伝子導入の効率が向上する
https://www.t-technoarch.co.jp/data/anken/T15-147.pdf

従来技術との比較

従来の非ウィルス性遺伝子導入剤と比べて、骨関連細胞に関する遺伝子導入効率が高く、細胞毒性が低い

特徴・独自性
  • アミロライド誘導体存在下で、オリゴアルギニンで修飾したリン酸カルシウムを遺伝子導入剤として使用した場合、骨関連細胞に対する遺伝子導入効率が10倍以上向上する
実用化イメージ

虫歯や歯周病によって、口腔内の硬組織が欠損し、結果、咀嚼機能障害を引き起こす、そこで、遺伝子導入技術を応用し、硬組織を再生させることで、新たな虫歯治療、歯周病治療を開発する

研究者

病院 口腔回復系診療科 咬合回復科

天雲 太一  

Taichi Tenkumo

口腔粘膜由来細胞を利用したiPS細胞の効率的な製造方法

特徴・独自性
  • 本発明は、患者への負担が少なく、しかも高い樹立効率でiPS 細胞を作製する技術を提供することを目的とする。より詳細には、本発明は、口腔粘膜(歯肉)由来の体細胞を利用することによって、誘導多能性幹細胞を高い樹立効率で製造する方法に関する。更に、本発明は、当該製造方法によって作製された誘導多能性幹細胞に関する。
  • また、歯肉由来の細胞を用いることで、iPS 細胞の作製の際にウイルスを用いずに外来遺伝子挿入のないヒトiPS 細胞を、効率的に樹立することが可能である。さらに、ヒト以外の異種成分を含まない培養系を確立するために、iPS 細胞源である同一患者由来の歯肉由来細胞が自己フィーダー細胞として好適であることも明らかにしており、本発明技術を基盤とした移植に安全なiPS 細胞技術が確立されつつある。
実用化イメージ

本発明技術を用いて個々の患者の歯肉から効率的にiPS細胞を作製することによって、医科・歯科領域で期待されているオーダーメイドの再生医療が、より容易かつ効率的となることが想定される。

研究者

大学院歯学研究科 歯科学専攻 リハビリテーション歯学講座(分子・再生歯科補綴学分野)

江草 宏  

Hiroshi Egusa

口腔バイオフィルム機能解析システム:「何がいるか?」から「何をしているか?」まで

前の画像
次の画像
特徴・独自性
  • 歯、舌、口腔粘膜には、500 種を超す膨大な数の微生物がバイオフィルムを形成し、齲蝕、歯周病、口臭などの口腔疾患、さらには歯科材料劣化の原因となります。
  • 私どもは、構成菌種や機能(代謝)をメタゲノム、メタボロミクスといったオミクス技術や最新の検出技術で解析すると共に、その多くが嫌気性菌である構成菌を生きたまま取り出し、高度嫌気性実験システムを用いて機能解析を行っています。「何がいるか?」から「何をしているか?」までを知ることで、初めてその制御(予防と治療)が可能となります。
実用化イメージ

口腔バイオフィルム性疾患(齲蝕、歯周病、口臭、誤嚥性肺炎など)のリスク診断
・ 薬剤や食材の口腔バイオフィルム機能への効果
・バイオフィルム性材料劣化の評価

研究者

大学院歯学研究科 歯科学専攻 エコロジー歯学講座(口腔生化学分野)

髙橋 信博  

Nobuhiro Takahashi