行のキーワード 489ワード

金属回収

難処理性高分子廃棄物の化学リサイクル

前の画像
次の画像
特徴・独自性
  • PET、PVC、HIPS 等の廃プラスチックを、付加価値の高い化学物質への転換を目的に、乾式及び湿式プロセスで種々の高分子廃棄物リサイクルの研究をしている。例えば、PETの脱カルボキシル化にて、高収率でベンゼンを得ることに成功。また、難熱性プラスチックやPVC の脱ハロゲン化プロセスを開発し、炭化水素として燃料利用等を検討している。さらに、抗菌性やイオン交換特性を付与することを目的に、PVC の塩素の一部を官能基で化学修飾する研究をしている。また、HIPSの熱分解による脱ハロゲン化で、高収率でスチレンを得ることができる。これらの技術を用いて、金属・プラスチック複合物から金属とプラスチックを効果的にリサイクルする化学プロセスを構築している。
実用化イメージ

廃棄物のリサイクルプロセスの開発に付随して起こる諸問題を解決するための方法を提供することができる。

研究者

大学院環境科学研究科 先端環境創成学専攻 自然共生システム学講座(資源再生プロセス学分野)

吉岡 敏明  

Toshiaki Yoshioka

金属間化合物

析出強化型Co基超耐熱合金

前の画像
次の画像
特徴・独自性
  • これまで、Co基合金は高温材料として利用できる金属間化合物γ’相が存在しないため、高温強度がNi 基合金に比べて低い問題がありました。我々は、新しい金属間化合物相Co3(Al、W) γ’相を発見し、γ/γ’型Co-Al-W 基鋳造及び鍛造合金で優れた高温強度が得られています。1100℃以上の超高温用としてはIr-Al-W 合金があります。また、Co 基合金は耐摩耗性に優れる特徴を有しています。例えば、摩擦攪拌接合(FSW)ツールとして優れた特性を示し、従来、FSWが困難であった鉄鋼材料やチタン合金などの接合に対しても高いパフォーマンスを確認しています。各種、高温部材、耐摩耗部材、FSW への適用に向けた共同研究を希望します。
実用化イメージ

研究者

大学院工学研究科 金属フロンティア工学専攻 創形創質プロセス学講座(計算材料構成学分野)

大森 俊洋  

Toshihiro Omori

金属グラス

高性能な小型センサ・アクチュエータの設計、製造とテスト

前の画像
次の画像
特徴・独自性
  • 金属ガラスやナノ構造などの新しい種類の材料をマイクロテクノロジと統合して、音響センサやアクチュエータ、熱電発電およびウェハレベルパッケージ等の新規デバイスの研究/ 開発を行っている。これらはマイクロ・ナノ・エレクトロ・メカニカル・システム(MEMS / NEMS)と呼ばれ、今日のスマートフォンや自動運転、ドローン等に欠かせない技術となっている。学内外のパートナーと連携して基礎的な材料/プロセス技術からパッケージングや信頼性等、産業に移転可能な実用化技術までを開発している。
実用化イメージ

マイクロシステム分野で幅広い産学連携が可能である。信頼性、歩留り等、重要な項目で産業へ技術移転が可能なレベルにプロセス、デバイス、システムの開発を最適化ができる。フラウンホーファー研究機構と協力実績があり、産学連携において幅広いプロジェクト要件への対応や複雑なシステムソリューションを提供することができる。

研究者

マイクロシステム融合研究開発センター

Froemel Joerg Eckhardt  

Froemel Joerg Eckhardt

金属極細線

金属極細線のジュール熱溶接と機能の創出

前の画像
次の画像
特徴・独自性
  • 金属マイクロ・ナノ材料が持つ優れた物理的諸特性を有効に活用して新しい機能を創出するために、電流により発生するジュール熱を利用した極微細材料の溶接、切断手法を開発しています(図1)。2 本の極細線の先端同士を接触させた状態である範囲内の一定直流電流を付与することで、細線接触部を自発的に溶融、凝固させ、同部を溶接できることを見出しました。また当該手法を駆使して極微細材料のマニピュレーションも可能です。
実用化イメージ

素材としての金属極細線から新たな機能を創出できます(図2)。また極微細材料の物理的諸特性を評価する独自の試験技術も開発しており(図3)、これら技術を活用した産学連携が可能です。

研究者

大学院工学研究科 ファインメカニクス専攻 ナノメカニクス講座(材料システム評価学分野)

燈明 泰成  

TOHMYOH Hironori

金属材料

構造用金属材料の組織と特性の制御

前の画像
次の画像
特徴・独自性
  • 金属材料の性質は、材料を構成する微細組織によって大きく変化します。我々は、従来型のバルク材の結晶構造・組成・粒径等の制御のみならず、結晶界面の構造やサブナノ領域の局所的組成など原子レベルでの先進的組織制御により、強度と延靱性に優れた構造用金属材料の設計・開発を、鉄鋼を中心に行っています。特に、結晶界面(粒界や異相界面)を制御する新しい観点から、相変態・再結晶を用いた結晶粒微細化の指導原理を構築するべく基礎的研究、豊富な資源としての軽元素の機能の基礎的理解と有効活用による鉄鋼およびチタン合金の更なる高機能化の研究を行っています。
実用化イメージ

熱処理や塑性加工を用いた鉄鋼や非鉄金属の高機能化、鉄鋼の表面硬化処理、金属組織に関する各種解析などを専門としており、この経験を生かして少しでも産業界の役に立てればと願っています。

研究者

金属材料研究所 材料設計研究部 金属組織制御学研究部門

古原 忠  

Tadashi Furuhara

アトミックスケールの構造観察と材料特性

前の画像
次の画像
特徴・独自性
  • 金属材料や希土類金属等の材料特性は,原子スケールの構造により大きく変化するため,中性子やX線による原子の位置やその動きの観察は,材料特性の起源解明や,特性制御に重要な特徴量を明らかにする上で効果的です。近年は中性子の特徴を活かした観測手法の高度化に取り組んでいます。また恒弾性特性等の未解明な起源を明らかにするために研究を行っております。
実用化イメージ

物質内部を観るときには,観たいものと相互作用する探子(スパイ)を送り込みます。X線では観えない(とらえにくい)場合でも,中性子を用いると観える場合がありますので,ご相談いただければと思います。

研究者

金属材料研究所 材料物性研究部 量子ビーム金属物理学研究部門

池田 陽一  

Yoichi Ikeda

形状制約のない力学的異方性材料の簡易な弾性定数計測手法の開発

前の画像
次の画像
特徴・独自性
  • 本弾性定数計測手法は、任意の弾性定数を入力値に用いて共鳴振動解析を行い、振動実験から得られた共鳴振動数と各振動様式が解析結果と一致する入力弾性定数を逆解析的に求める手法です。材料種、材料形態および計測環境の制約を伴わない計測手法の構築を目指しており、金属材料・セラミックス材料・高分子材料・複合材料、顕微鏡サイズ材料・薄膜材料・異種接合材料および高温環境下なども研究対象としています。
実用化イメージ

本研究を発展させるためには、企業の課題と我々の課題との間のギャップを埋める必要があり、知識の相互補完なしでは目的を達成することができない研究開発テーマです。是非、抱えている課題や困難をお教えください。

研究者

大学院工学研究科 航空宇宙工学専攻 航空システム講座(材料・構造スマートシステム学分野)

山本 剛  

Go Yamamoto

現場で、目視で、金属材料への水素侵入をリアルタイム検出

前の画像
次の画像
概要

金属材料に水素が侵入すると、材料の機械的特性が低下し脆性破壊することがある。(水素脆化)水素脆化の発生を事前に予測するためには、材料への水素侵入を検出する必要がある。本技術では、対象となる金属材料に「水素と反応して色が変わる高分子センサー」を成膜することで、材料に侵入した水素を目視で発見できる。高分子センサーは安価かつ容易に成膜可能なため、大型で形状が複雑なインフラ設備にも適用できると期待される。

従来技術との比較

従来、金属中の水素検出には大型で高価な装置を必要としていたため、現場における水素検出は困難であった。本技術の水素センサーは水素を視認可能にするため、既存設備に成膜するだけで水素の侵入を発見できる。

特徴・独自性
  • ・金属材料に侵入した水素をリアルタイムで可視化できる。
  • ・金属の腐食に伴い侵入した微量の水素でも検出できる。
  • ・安価かつ容易に成膜可能なセンサーを使用するため、既存の大型設備にも適用できる。
  • ・材料に侵入した水素を発見することで、水素脆化の防止と材料の長寿命化が期待される。
実用化イメージ

本技術によって、大型のインフラ材料に侵入した水素を容易に検出できる。既存設備でも、材料表面に水素センサーを成膜すれば材料に侵入した水素を目視で発見できるため、メンテナンスコストの削減が期待できる。

研究者

金属材料研究所 材料設計研究部 耐環境材料学研究部門

柿沼 洋  

Hiroshi Kakinuma

金属錯体

エネルギーデバイス用金属錯体触媒の開発

前の画像
次の画像
特徴・独自性
  • アザフタロシアニン金属錯体を炭素上に分子担持することで燃料電池や金属空気電池の正極反応である酸素還元反応(ORR)に対する高活性なAZapthalocyanine Unimolecular Layer(AZUL)触媒を開発しました。本触媒はレアメタルフリーでありながら白金などのレアメタルと同等以上の性能を示します。本触媒を電池やその他のエネルギーデバイス用に展開しています。
実用化イメージ

本成果を基に東北大学発ベンチャー「AZUL Energy(株)」を設立。次世代エネルギー産業だけでなく、モビリティ産業も含め幅広く産学連携を行っています。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

金属製錬

エコマテリアルプロセス

前の画像
次の画像
特徴・独自性
  • 溶融鉄合金・スラグの熱力学的性質、反応速度論、複合酸化物の相平衡など、鉄鋼を中心とした金属製造プロセスに関する物理化学的基礎研究、金属スクラップや廃棄物リサイクルの熱力学、スラグを利用した炭酸ガス固定化等、環境関連の研究を行っている。最近では、従来行ってきた素材製造プロセス工学に基礎を置く研究手法に、計量経済学、LCA、物質フロー分析などを融合させ、他に類を見ない独特の環境研究を展開している。
実用化イメージ

高炉、電炉鉄鋼メーカーとは従来より強く連携して研究を進めてきたが、スラグ等製錬副生物の高度資源化のために、非鉄メーカー、廃棄物中間処理事業者、行政とも連携していきたい。

研究者

未来科学技術共同研究センター 開発企画部

長坂 徹也  

Tetsuya Nagasaka

金属積層造形

電子ビーム積層造形技術による素形材製造技術

前の画像
次の画像
特徴・独自性
  • 大量生産を中心とする金属製品の「もの作り」は海外へ流出し、日本が生き残ってゆくためには高付加価値の多品種少量生産やカスタムメイド生産に移行する必要があります。電子ビーム積層造形法は三次元CADデータに基づく電子ビーム走査により、金属粉末を選択的に溶融・凝固させた層を繰り返し積層させて三次元構造体を製作する新たなネットシェイプ加工技術です。金型レスのAdditivemanufacturing 技術として有望です。
実用化イメージ

人工関節などの医療用機器のカスタム製造技術として。難加工性合金(チタン合金、マグネシウム合金など)からなる航空機・自動車部品などの製造に最適です。鋳造技術では不可能な素形材製造技術として期待されます。

研究者

未来科学技術共同研究センター 開発研究部 新規金属積層造形技術開発とそれを核とした新材料・材料加工プロセスの創生

千葉 晶彦  

Akihiko Chiba

金属ナノ粒子

低コスト・高スループットナノ材料プロセッシング

前の画像
次の画像
特徴・独自性
  • 従来の液相における材料合成では、溶媒に溶解する原料を大前提としているために、材料選択性が限られるだけでなく、洗浄・廃棄物など様々な問題があります。原料が溶媒に溶解しない物質であれば、原料選択性の広がりによりプロセッシングの枠が格段に広がります。例えば、金属原子と酸素原子で構成された安価な酸化物が原料に利用できれば、環境負荷とコストの低減できる可能性があります。従来にない新しいプロセッシングにより、新しい材料を作成してきました。
実用化イメージ

ナノ粒子関連材料の低コスト・高環境性・高スループット材料プロセッシングの開発で、これまでに多くの産学官連携(JST、 NEDO)を推進してきました。

研究者

大学院工学研究科 応用化学専攻 分子システム化学講座(極限材料創製化学分野)

林 大和  

Yamato Hayashi

金属ナノ粒子を用いた抗原虫薬の開発 アミノ酸被膜による効果の増強

前の画像
次の画像
特徴・独自性
  • 金属ナノ粒子は、一般的な大きさの金属個体とは異なる物理的、化学的特性を持つ。これらの特性は金属ナノ粒子の比表面積が極めて大きいことに起因する。また、その量子サイズによって特有の物性を示す。
  • さらに、金属ナノ粒子は微生物を殺滅する活性酸素種を産生する能力があり、膜透過性も持つ。
  • 我々は、アミノ酸被膜金属ナノ粒子がトキソプラズマの増殖を抑制することを報告している。
実用化イメージ

マラリアを始め、人類の脅威となっている原虫感染症の予防、治療、診断について、金属ナノ粒子を使った新しいツールを提供できる可能性がある。ナノテクノロジー分野、動物医療を含めた医薬品分野等において活用の可能性がある。

研究者

大学院農学研究科 生物生産科学専攻 動物生命科学講座(動物環境管理学分野)

加藤 健太郎  

Kentaro Kato

マイクロ波を利用した機能無機材料プロセッシング

前の画像
次の画像
特徴・独自性
  • マイクロ波は化学反応の駆動力としても注目されています。材料プロセッシングにおいては、単なる省エネルギー加熱としての特徴のみならず、反応促進効果や非平衡反応の進行が認められ、新素材を生み出す手法として期待できます。当研究室では、ミリ波からセンチ波に至るマイクロ波を駆使し、雰囲気制御を必要としない簡便な窒化物コーティング法や、サーメット焼結などの粉末冶金技術、金属ナノ粒子合成法を開発しています。
実用化イメージ

マイクロ波を利用した窒化物コーティング法は、オンサイトかつ短時間の成膜を可能にし、歯科インプラント材や宝飾品、切削工具等、チタン合金や各種セラミックス、硬質材料などに適用できます。

研究者

滝澤 博胤  

Hirotsugu Takizawa

金属配線

型の線幅よりも微細な金属配線パターンの作製が可能!

概要

湿式エッチングでサブマイクロ線幅の金属配線付き基板を作製する方法
https://www.t-technoarch.co.jp/data/anken/T11-050.pdf

従来技術との比較

従来のフォトレジストマスクをウエットエッチングに用いた場合、金属配線幅は約10μmが下限でした。エッチング耐性に優れたレジストの熱ナノインプリント成形で、線幅0.1μmの金属配線の作製に成功しました。

特徴・独自性
  • 金・銀・銅・クロムなどのウエットエッチング加工が可能です
  • 金属と有機レジストを化学結合を介してつなぐ分子接着剤を用いています
  • サイドエッチングによる狭線化が可能なため、マイクロサイズの金属線幅をサブミクロンサイズまで縮小することが可能です
実用化イメージ

透明導電パネル・磁気シールドフィルム・帯電防止シートなどへの利用が考えられます。ウエットエッチング方式での加工なので、ロールtoロール製法にも対応が期待できます。

研究者

多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター 光機能材料化学研究分野

中川 勝  

Masaru Nakagawa

金属薄膜

原子拡散接合法(新しい室温接合技術)とその応用

前の画像
次の画像
特徴・独自性
  • 原子拡散接合法(Atomic Diffusion Bonding, ADB)は、同種・異種のウエハ等を室温で接合する、我々が提案した新しい技術です。標準的なADBは、超高真空中で薄い金属膜を使って接合する技術ですが、最近、酸化膜や窒化膜を使ったADB開発にも成功し、接合界面の機能を更に向上させました。また、Au膜等を用いた大気中接合は、利便性が高く、優れた熱伝導性等を実現できます。
実用化イメージ

新しい電子デバイス、光学デバイス、パワーデバイス、MEMS、ポリマー等の有機系デバイスの形成や、精密機器部品等への展開が期待され、一部は実際のデバイス形成技術として既に利用されています。

研究者

高等研究機構学際科学フロンティア研究所 先端学際基幹研究部 情報・システム研究領域

島津 武仁  

Takehito Shimatsu

金属リサイクル

機能性粉体プロセスの創成とシミュレーションによる粉体プロセスの最適化

概要

粉体プロセスを自在に精緻に制御するためのツールとしてのシミュレーション法の創成を行っている。本シミュレーションによって、粉体プロセスを最適化することにより、省エネルギー化や省資源化を図っている。また、粉体プロセスの一つである粉砕操作によって発現するメカノケミカル現象を積極的に活用し、都市鉱山からの金属リサイクルやバイオマスからの創エネルギーに関する研究を展開している。

従来技術との比較

これまで予測や最適化設計できなかった粉砕や混合プロセスを粉体シミュレーションによって可能にし、粉体プロセスの予測や設計、最適化を可能にした。

特徴・独自性
  • 粉体シミュレーションを活用して粉体プロセスの予測や設計を行うこと。
実用化イメージ

粉体プロセスにおいては、実験室レベルから工業レベルへのスケールアップの方法が確立されていない。粉体シミュレーションによって、工業レベルのスケールアップ機の条件予測を可能にすること。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 機能性粉体プロセス研究分野

加納 純也  

KANO Junya

空間情報科学

リモートセンシング・GIS(地理情報システム)

前の画像
次の画像
特徴・独自性
  • リモートセンシング全般、GIS にまつわる研究を行っている。人工衛星や航空機によるリモートセンシングデータを利用した環境モニタリング、農地や植生地域の管理、災害による被害状況の把握などが主研究内容であり、陸域を観測したデータの解析を中心としている。合成開口レーダ(SAR)やハイパースペクトルセンサによる観測データも用いている。GISは研究対象であるとともに主要なツールの一つでもあり、リモートセンシングデータのほか、国土地理院によって提供される基盤地図情報などの空間データの管理や空間解析に利用している。
実用化イメージ

広域情報を一度に把握でき、また過去の状況を調べることもできる。農地管理のほか、自治体やライフライン関連企業での、施設・設備の情報の管理・運営などにも広く役立てることができる。

研究者

大学院農学研究科 生物生産科学専攻 農業経済学講座(地域資源計画学分野)

米澤 千夏  

Chinatsu Yonezawa

空気調和

空気電池

エネルギーデバイス用金属錯体触媒の開発

前の画像
次の画像
特徴・独自性
  • アザフタロシアニン金属錯体を炭素上に分子担持することで燃料電池や金属空気電池の正極反応である酸素還元反応(ORR)に対する高活性なAZapthalocyanine Unimolecular Layer(AZUL)触媒を開発しました。本触媒はレアメタルフリーでありながら白金などのレアメタルと同等以上の性能を示します。本触媒を電池やその他のエネルギーデバイス用に展開しています。
実用化イメージ

本成果を基に東北大学発ベンチャー「AZUL Energy(株)」を設立。次世代エネルギー産業だけでなく、モビリティ産業も含め幅広く産学連携を行っています。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu