行のキーワード 311ワード

電池

生物模倣材料・デバイスの開発

前の画像
次の画像
特徴・独自性
  • 生物の優れた機能を学び、材料・デバイスの創成に取り入れることで、生物を超える機能を示す機能を創出する『生物模倣工学』を目指しています。例えば、ムール貝に学んだ表面処理・接着剤の開発、ウツボカズラに学んだ抗生物付着基板の開発、ヘモグロビンに学んだ高活性燃料電池(水素・酵素・微生物等)の非白金触媒設計、生物の針に学んだ針型バイオセンサーなど多岐にわたります。
実用化イメージ

電気化学、高分子化学を基盤に金属空気電池・燃料電池・表面処理・接着・バイオセンサー等を含むエネルギー・バイオ・電気電子領域に関する技術・知見を提供します。

研究者

高等研究機構学際科学フロンティア研究所 新領域創成研究部学際基盤研究分野 デバイス・テクノロジー研究領域

阿部 博弥  

Hiroya Abe

エネルギーデバイス用金属錯体触媒の開発

前の画像
次の画像
特徴・独自性
  • アザフタロシアニン金属錯体を炭素上に分子担持することで燃料電池や金属空気電池の正極反応である酸素還元反応(ORR)に対する高活性なAZapthalocyanine Unimolecular Layer(AZUL)触媒を開発しました。本触媒はレアメタルフリーでありながら白金などのレアメタルと同等以上の性能を示します。本触媒を電池やその他のエネルギーデバイス用に展開しています。
実用化イメージ

本成果を基に東北大学発ベンチャー「AZUL Energy(株)」を設立。次世代エネルギー産業だけでなく、モビリティ産業も含め幅広く産学連携を行っています。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

レアメタルフリー高性能蓄電池の先端ナノテクノロジー

前の画像
次の画像
特徴・独自性
  • 高容量・高出力・高安全性・低コストの次世代蓄電エネルギーデバイスであるポストリチウムイオン電池を実現するために、単原子層物質グラフェン、金属硫化物ナノシート、ナノ結晶活物質、ナノ粒子、ナノ多孔材料などの新しい機能材料の開拓とデバイス応用を研究する。全固体型リチウム二次電池、マグネシウム電池、燃料電池、大容量キャパシタ、ウェアラブル電池などの高性能電極材料・デバイス創製の精密化学プロセスを研究する。
実用化イメージ

ポストリチウムイオン電池および革新的エネルギー材料開発を研究シーズとして素材産業、電池メーカー、電気自動車企業、スマートグリッドや再生可能エネルギー等の電力ビジネス企業との共同研究を積極的に推進する。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター エネルギーデバイス化学研究分野

本間 格  

Itaru Homma

環境にやさしい太陽電池のキーマテリアル:SnS

前の画像
次の画像
特徴・独自性
  • 硫化スズ(SnS)は、安価で安全な元素からなる太陽電池材料です。SnS太陽光パネルの原材料費は、例えばCIGS太陽電池の1/14です。SnSは通常p型伝導性を示すため、これまではp型SnSとn型CdS等のヘテロ接合によって太陽電池が研究されてきましたが、変換効率は5%に留まっていました。独自に開発したプロセスによりn型SnS薄膜を世界で初めて実現し、SnS太陽電池の高効率化への道を拓きました。
実用化イメージ

環境にやさしい薄膜太陽電池への応用や、赤外波長領域で用いるフォトダイオードへの応用が期待できます。実用化に向けた観点の研究に興味ある企業様との協働を期待しています。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 原子空間制御プロセス研究分野

鈴木 一誓  

Issei Suzuki

固体イオニクス材料のエネルギー変換・貯蔵・利用技術への応用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 固体イオニクスを中心として高度なエネルギー変換を実現するための機能性材料の開発を行っている。燃料電池や蓄電池の高性能化のためには、高いイオン伝導度と化学的安定性を有するイオン導電体や混合導電体が必要とされ、これら材料を酸化物の欠陥化学や熱力学に基づき探索し、デバイスに応用している。これまでに酸素分離膜型水素製造システムや全固体リチウム電池を開発している。
実用化イメージ

酸化物イオン・電子混合導電体は小型水素製造システムや燃料電池の電極材料、酸素吸蔵放出材料、純酸素の工業的利用と関連が深く、リチウム伝導体は発火の危険性のない全固体電池への応用が期待される。

研究者

大学院工学研究科 知能デバイス材料学専攻 情報デバイス材料学講座(エネルギー情報材料学分野)

髙村 仁  

Hitoshi Takamura

発火や破裂の危険が少ない安全な電池の実現に貢献する

概要

小さな力で容易に伸縮する高分子電解質
https://www.t-technoarch.co.jp/data/anken/T19-753.pdf

従来技術との比較

従来の有機電解質は発火の危険があった。一方高分子化することで固体電解質化した高分子電解質はイオン伝導性が低かった。

特徴・独自性
  • 室温で10-4 S/cmクラスのLiイオン伝導度を持つ高分子電解質の合成に成功。
  • ミクロンサイズの多孔膜と光架橋性ポリエチレングリコール(PEG)の複合化により室温での高い性能発現とLiイオンの拡散を制御。
  • 広い電位窓(4.7 V)と高いLiイオン輸率(0.39)を実現。
  • 多孔膜を電解質中に形成することでデンドライト形成の抑止効果にも期待。
実用化イメージ

Liイオン電池用の安全な電解質として利用可能。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

海洋・畜産バイオマスからエネルギー変換用炭素触媒を実現

概要

ホヤ殻由来セルロースと乾燥血粉を混合して焼成することで、酸素還元、酸素発生、水素発生用電気化学触媒能を持つカーボンアロイ触媒を合成。水電解や燃料電池、金属空気電池の電極触媒として応用可能。

従来技術との比較

白金代替触媒として開発されてきたカーボンアロイ触媒は従来合成有機化合物を焼成して得られる。本発明によれば高い触媒活性を持つカーボンアロイ触媒をバイオマスから合成できる。

特徴・独自性
  • ホヤ殻に含まれるセルロースナノファイバー(CNF)の炭化による炭素と血液中に含まれる鉄・窒素・リンなどが複合化された「ナノ血炭」を初めて合成。
  • 炭素の導電性とヘテロ元素の触媒活性により、レアメタルを用いた電極触媒に迫る酸素還元反応・酸素発生反応触媒活性を持つ両性電極触媒を実現。
  • 三陸地域の課題となっていた産業廃棄物の活用と、エネルギー循環社会に資する次世代エネルギーデバイス用高性能触媒材料の合成によりSDGsに貢献。
実用化イメージ

水電解や燃料電池などの水素システム、金属空気電池などのエネルギー貯蔵デバイス用のレアメタル代替電極触媒として活用できる。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

転倒

すべり転倒の工学解析に基づく転倒抑制フットウェアの開発

前の画像
次の画像
特徴・独自性
  • 歩行動作解析ならびに靴底/床面間のトライボロジー解析に基づいて、すべりなどの外乱による転倒防止のための歩行方法を提案している。さらに、油の上でも超耐滑性に優れているゴム靴底パターンや、防滑性の高い歩道用コンクリート平板、靴/ 床の摩擦係数測定システムを地域企業とともに開発し、実用化に成功している。
実用化イメージ

労働現場における転倒事故や高齢者の転倒事故を防止するための製品開発など。

研究者

大学院工学研究科 ファインメカニクス専攻 ナノメカニクス講座(ソフトメカニクス分野)

山口 健  

Takeshi Yamaguchi

伝導特性制御

半導体量子構造の伝導特性制御と超高感度NMR

前の画像
次の画像
特徴・独自性
  • GaAs やInSbの量子構造の伝導特性を制御し、核スピンの偏極状態を操作することで、二次元構造やナノ構造に適用できる超高感度NMR技術を確立した。さらに、InSb 量子構造においてアルミナ絶縁膜を用い、理想的なゲート操作を実現した。また、核スピンが感じる雑音特性を周波数依存性も含め測定する一般化された横緩和時間の考え方を提案、実証した。この概念は核スピンを用いるすべての計測に大きな変化をもたらすことが期待される。
実用化イメージ

良好なゲート制御を用いた次世代InSbデバイス。一般化された横緩和時間を利用した様々な核スピン計測、核磁気共鳴。高感度NMR は物性研究への応用が中心であるが、量子情報処理への貢献も見込まれる。

研究者

高等研究機構先端スピントロニクス研究開発センター スピントロニクス基礎研究グループ

平山 祥郎  

Yoshiro Hirayama

天然物

超臨界流体の物性に立脚した抽出分離、洗浄、ポリマー加工

前の画像
次の画像
特徴・独自性
  • 超臨界流体に関する基礎的な物性として、高温高圧下での密度、粘度の測定と推算、高温での水素結合特性についての研究を行っている。また、それらを利用した応用技術として、天然物の分離、クリーニング洗浄、ポリマー可塑化を利用した塗膜生成、重質油改質、バイオマスのカスケード利用、それに藻類バイオマス利用技術についての研究を実施している。
実用化イメージ

洗浄技術:精密機械部品、光学部品など。
天然物分離:食品、サプリメント、香料。
ポリマー可塑化:機能性樹脂、電子部品材料など。

研究者

未来科学技術共同研究センター 開発研究部 超臨界ナノ材料技術の社会実装

猪股 宏  

Hiroshi Inomata

金ナノ粒子と生理活性天然物を利用したセンサー物質開発研究

前の画像
次の画像
特徴・独自性
  • 金ナノ粒子を使用した検査薬の担持物質として、これまではタンパク質(レクチン等)や単純な有機化合物が使用されてきた。一方、生理活性天然物は医農薬指向で研究されてきたが、多様な作用機構を応用すれば検査薬に使用可能と考えられる。これらの性質を組み合わせることで新奇センサー物質の創成が可能と予想される。
実用化イメージ

生理活性天然物の活性発現機構に着目することで、従来技術(抗体等)では検出が難しかった物質(低分子化合物・金属イオン等)の検出が可能になると期待できる。

研究者

大学院農学研究科 農芸化学専攻 生物化学講座(生物有機化学分野)

榎本 賢  

Masaru Enomoto

天然物合成

生物活性天然物をもとにした化合物ライブラリー合成法

前の画像
次の画像
特徴・独自性
  • 生物活性をもつ天然物の骨格をもとに迅速な類縁体合成法を開発している。環状デプシペプチド、複素環化合物、テルペン、ステロイド、糖鎖、さらにそれらのハイブリッド化合物等幅広い化合物の合成に精通している。化合物ライブラリーを構築するため、固相法を用いたコンビナトリアル合成法を開発している。HDAC 阻害、テロメラーゼ阻害、V-ATPase 阻害作用をもつ化合物の合成を行っている。
実用化イメージ

標的タンパク質を明らかにするためのペプチドタグと生物活性化合物を連結する分子プローブ合成法を確立している。固相合成を利用して類縁体を迅速合成して創薬のシーズを探索する研究のほか、結合タンパク質のネットワーク解析のプローブ合成について学術指導および共同研究する準備がある。

研究者

大学院薬学研究科 分子薬科学専攻 分子制御化学講座(反応制御化学分野)

土井 隆行  

Takayuki Doi

天然有機化合物

有機合成化学および天然物化学

前の画像
次の画像
特徴・独自性
  • アミノ酸、あるいはアミノ酸から簡単に合成できる低分子有機化合物を触媒とした、光学活性化合物の実用的な合成法の開発を行っています。世界中で使われているJorgensen-Hayashi Catalystを開発しました。さらに、それらの合成方法を利用して、抗癌作用等の生物活性を有する天然有機化合物の独創的・実用的な合成を行っています。これまでに抗インフルエンザ治療薬であるタミフルのわずかone-pot での合成に成功しています。
実用化イメージ

医薬品合成、農薬合成、化成品合成に我々の開発した反応、触媒は大いに役立ちます。

研究者

大学院理学研究科 化学専攻 有機化学講座(有機分析化学研究室)

林 雄二郎  

Yujiro Hayashi

電波

非接触方式による生体信号計測

前の画像
次の画像
概要

生体情報を完全非接触で取得するウェアレス生体信号計測に関して研究を行っています。特に、ビデオカメラで取得可能な脈波信号(映像脈波)と、室内の電波環境変化から得られる人の活動パターン(活動量)に注目し、これらを医療や健康管理に活用するための技術開発を進めています。

従来技術との比較

従来のような皮膚に接触させるセンサを用いることなく、完全非接触で心拍数などの生体情報を計測することを可能とします。

特徴・独自性
  • 映像脈波に関しては、従来の心拍数に加えて血圧値や血中酸素飽和度などを推定することを目指し、推定モデルと撮像方法の改良を通して推定精度の向上を図っています。
  • 電波による活動パターン推定では、人の移動を模した自走ロボットを用いることで、人を使ったデータ収集が不要なモデル構築を目指しています。
実用化イメージ

ウェアレス生体計測は、センサ装着が難しい対象者や環境での計測に対して有用な技術です。また、センサ装着のし忘れがないため、長期間にわたる生体データ収集などにも活用が期待できます。

研究者

サイバーサイエンスセンター 研究開発部 サイバーフィジカルシステム研究部

杉田 典大  

Norihiro Sugita

電波散乱体

イノベーションの基盤となる電磁波応用技術の研究開発

前の画像
次の画像
特徴・独自性
  • 電磁界理論,計算電磁気学,およびアンテナ工学の視点から,幅広く研究を行っている.これまでの研究内容は以下の通り.
  • ・人体とアンテナの相互作用の数値シミュレーション
  • ・無線電力伝送用大規模アレーアンテナの数値解析
  • ・高セキュリティのアレーアンテナの設計法
  • ・機械駆動の可変アンテナの研究
  • ・3Dプリンタを用いた広帯域の電波散乱体の設計
  • ・高精度な電流分布推定法の構築
実用化イメージ

アンテナ・通信メーカーとの産学連携実績が多数ある.他にも,材料メーカー,インフラ業界,独法などとの連携実績もあり,電磁波が応用できる分野であればどこでも連携は可能.

研究者

大学院工学研究科 通信工学専攻 波動工学講座(電磁波工学分野)

今野 佳祐  

Keisuke Konno

電流分布推定

イノベーションの基盤となる電磁波応用技術の研究開発

前の画像
次の画像
特徴・独自性
  • 電磁界理論,計算電磁気学,およびアンテナ工学の視点から,幅広く研究を行っている.これまでの研究内容は以下の通り.
  • ・人体とアンテナの相互作用の数値シミュレーション
  • ・無線電力伝送用大規模アレーアンテナの数値解析
  • ・高セキュリティのアレーアンテナの設計法
  • ・機械駆動の可変アンテナの研究
  • ・3Dプリンタを用いた広帯域の電波散乱体の設計
  • ・高精度な電流分布推定法の構築
実用化イメージ

アンテナ・通信メーカーとの産学連携実績が多数ある.他にも,材料メーカー,インフラ業界,独法などとの連携実績もあり,電磁波が応用できる分野であればどこでも連携は可能.

研究者

大学院工学研究科 通信工学専攻 波動工学講座(電磁波工学分野)

今野 佳祐  

Keisuke Konno

電流モード回路

電流モード多値技術に基づく高速・低電力非同期データ転送方式に関する研究

前の画像
次の画像
特徴・独自性
  • 局所的に逐次動作をするその特性から高速・低消費電力・高環境適応・低ノイズなど様々なメリットがある、従来のクロックを使用しない非同期式制御によるVLSIシステムを提案しています。要求応答に基づくハンドシェーク通信のオーバヘッドを、多値符号化により配線数削減および通信プロトコルの根本的改善を行い、さらに電流信号表現による高駆動転送によるチップ内・チップ間ネットワークの高速化を実現しています。
実用化イメージ

本成果は、高速・低電力な大規模VLSI システムの実現において有用であり、これに関連するメニーコア、マルチモジュールNoC 分野において有意義な共同研究ができるものと考える。

研究者

電気通信研究所 計算システム基盤研究部門 新概念VLSIシステム研究室

羽生 貴弘  

Takahiro Hanyu

電力伝送

非接触エネルギー伝送を用いた産業機器・医療機器の開発

前の画像
次の画像
特徴・独自性
  • 独自技術を用いた非接触電力伝送システムを中心に数ワットから数十キロワットクラスの幅広い開発を行っている。産業機器ではモバイル機器を始めEV や工場内搬送装置に至る幅広い対応が可能である。医療機器では人工心臓への電力伝送や、主に四肢不自由者の運動機能再建を目指す機能的電気刺激装置(FES)の開発、がん治療として体内の温度計測を必要としない小型埋込素子を用いたハイパーサーミアの開発を行っている。
実用化イメージ

産業・医療用途共に、独自の信号伝送システムも併せて開発を行い実用化している。

研究者

災害科学国際研究所 レジリエントEICT研究推進部門 レジリエントEICT

松木 英敏  

Hidetoshi Matsuki

ドーパミン神経

ヒト間葉系細胞からの神経細胞誘導と神経変性疾患への応用

前の画像
次の画像
特徴・独自性
  • 骨髄間葉系細胞はすでに臨床応用されており、腫瘍形成能が無い。我々はNotch 遺伝子導入と浮遊培養を組み合わせることで神経前駆細胞を作り出すシステムを開発し、脳梗塞での有効性を示した。さらにGDNFによりドーパミン神経となり、ラットでパーキンソン病の機能改善が確認された(J. Clin. Invest, 2004)。さらにパーキンソン病サルの脳内へ自己細胞移植することで運動障害や脳内ドーパミン機能を長期間にわたり改善し、腫瘍形成や副作用が現れないことを分子イメージング技術で明らかにした。霊長類動物における世界で初めての成果でJ. Clin. Invest( 2013)に掲載され、Nature Review Neurosci、LosAngeles Times など主要な雑誌やメディアで取り上げられた。
実用化イメージ

神経前駆細胞、ドーパミン神経、共に脳梗塞やパーキンソン病の治療開発に有効である。さらに神経系に作用する薬剤開発に置けるスクリーニングにも応用できる。

研究者

大学院医学系研究科 医科学専攻 細胞生物学講座(細胞組織学分野)

出沢 真理  

Mari Dezawa

ドーピング

新奇有機半導体材料の合成と応用

特徴・独自性
  • 本研究では、外観構造が全く同じであるにも関わらず、電子の数が1つだけ違う特異な二つの分子を合成し、これらを混合することで、高い伝導性と物性制御性を兼ね備えた有機半導体材料を創製します。構造が同じ分子をドーパントとして用いるため、従来のドーピングの概念を超える高い割合での材料複合が可能と考えられます。幅広い物性を有する有機半導体の即時提供を可能とし、デバイス分野全体の飛躍的な進化を目指します。
実用化イメージ

研究者

高等研究機構学際科学フロンティア研究所 新領域創成研究部学際基盤研究分野 物質材料・エネルギー研究領域

上野 裕  

Hiroshi Ueno