行のキーワード 394ワード

病気

脂質の酸化原因を明らかにできる新たな手法を開発

前の画像
次の画像
特徴・独自性
  • 私たちの身体を構成する脂質が何らかの原因で酸化され、過酸化脂質が生じると、病気の要因になると考えられています。 故に、どのような酸化反応( 炎症やラジカル酸化) が進んでいるのかを知ることは重要で、私たちは過酸化脂質の構造を質量分析で詳細に解析することで、酸化反応の種類の見極めを達成しました。 つまり、その種類に応じた適切な抗酸化物質を選択すれば、効果的に酸化を抑制できると期待されます。
実用化イメージ

現在、病気予防を目的に、様々な抗酸化食品が出ていますが、私たちの方法を活用することにより、作用メカニズムが明確な確固たる抗酸化食品の創成に繋がると期待されます。

研究者

大学院農学研究科 農芸化学専攻 食品天然物化学講座(食品機能分析学分野)

仲川 清隆  

Kiyotaka Nakagawa

表面

コーティング及び界面修飾に関する分子動力学アプローチ

特徴・独自性
  • 固・液の親和性や濡れ、熱抵抗、分子吸着等のメカニズムを解明し、コーティングや表面修飾などの技術によりこれを制御するための基礎研究を、分子動力学シミュレーションを主な手法として進めている。
  • 熱・物質輸送や界面エネルギー等の理論をバックグラウンドとして、フォトレジストのスピンコーティングからSAM(自己組織化単分子膜)や各種官能基による親水性・疎水性処理まで様々なスケールの膜流動・界面現象を対象としている。また、主に液体を対象として、その熱流体物性値を決定する分子スケールメカニズムや、所望の熱流体物性値を実現するための分子構造に関する研究を行っている。これらの研究に関して興味のある企業との共同研究や学術指導を行う用意がある。
実用化イメージ

研究者

東北メディカル・メガバンク機構 予防医学・疫学部門

小原 拓  

Taku Obara

表面力測定による材料ナノ界面科学の創製

前の画像
次の画像
特徴・独自性
  • 固- 液界面現象、そして表面間の相互作用を分子レベルで具体的に解明することを目的として研究しています。中心手段は、2つの表面間に働く相互作用力の距離依存性を直接測定する表面力測定、そして当研究分野で開発した液体ナノ薄膜の構造化挙動を高感度で評価できる共振ずり測定法です。従来困難であった不透明試料( 金属、セラミック、高分子など) が測定できるツインパス型表面力装置も独自開発し、電極界面の評価も行っています。
実用化イメージ

機能材料界面における表面電荷や吸着状態等の特性やナノレオロジー・ナノトライボロジーの評価が可能です。機械、潤滑剤、ナノ材料、塗料・シーラント、化粧品等の業種に対して共同研究・学術指導を行う用意があります。

研究者

未来科学技術共同研究センター 開発研究部 界面分子エンジニアリング

栗原 和枝  

Kazue Kurihara

レーザファブリケーションによる高機能バイオインタフェースの創成

前の画像
次の画像
特徴・独自性
  • 本研究では、レーザ照射を利用して材料表面に様々な機能を付与する手法の開発を行っている。とくにレーザを材料に照射した際に生じる現象を、シミュレーションおよび実験的な手法を用いて明らかにし、新しい機能性インターフェースの創成を行っている。
  • 本研究成果は、生体・医療用デバイスへの応用を始めとし、幅広い分野への波及効果が期待できる。
  • ■ 高機能バイオインターフェースの創成
  • 人工臓器や人工血管、あるいはバイオインプラントなどに利用される材料は、生体組織や細胞に対する高い親和性が求められる。そこで本研究室では、レーザ照射による表面創成プロセスにより「生体に優しい」表面づくりにも取り組んでいる。
  • 本手法により、チタン系材料に対して生体に活性な機能を付与することに成功している。このような機能を持つ材料を生体内に埋入すると、表面にハイドロキシアパタイト(骨や歯の主成分)が自然に析出する。この方法を利用すれば骨との固着性に格段に優れるインプラントを作製することが可能であり、人工関節や歯科インプラントなどへの応用が期待できる。
  • 本研究ではこのような手法を駆使し、バイオ分野への新たなブレークスルーを目指す。
実用化イメージ

研究者

グリーン未来創造機構 グリーンクロステック研究センター

水谷 正義  

Masayoshi Mizutani

newNanoTerasuを用いた電子輸送現象可視化による機能性電子材料の革新

概要

結晶を原子層レベルまで薄くすると表面近傍に新奇な電子状態が発現し、量子的な効果が顕著に現れ、結晶単体では見られない高移動度電子やスピン偏極電子、金属絶縁体転移の発現など新奇な物性を示すことが多くあります。こうした特異物性を極薄膜や表面で実現し、制御・解明する研究を行っています。高輝度かつ高エネルギー分解能の放射光を駆使することで、新奇な物理現象を正確に捉えることが可能です。

従来技術との比較

放射光源を利用した表面解析の手法は、実験室光源と比較してより多くの情報を得る・より微細な試料の測定を行うことが可能です。

特徴・独自性
  • 世界最高性能を有するNanoTerasuとこれまで開発してきたin-situ ARPESマイクロ多端子電子輸送測定システムや計算科学を融合し、電子の運動を正確に記述し新たなナノ材料探索を実施
  • Nanoterasuを用いたin-situ ARPES手法(角度分解光電子分光(Angle-Resolved Photoemission Spectroscopy : ARPES))による、成膜環境下で物質の表面状態の詳細な解析が可能
  • 放射光施設での測定に資する原子層レベルの極薄膜試料の作成が可能
実用化イメージ

放射光を用い新奇低次元物性の解明や光電子分光・多端子計測を合わせた革新的電子輸送現象解明手法開発による機能性表面・極薄膜探索を行っています。電子挙動の理解は革新的な半導体や加工技術の進歩に繋がります。

研究者

国際放射光イノベーション・スマート研究センター 基幹研究部門 スピン計測スマートラボ

湯川 龍  

Ryu Yukawa

表面・界面

機能性高分子ハイブリッドナノ材料

前の画像
次の画像
特徴・独自性
  • Langmuir-Blodgett 法や浸漬法などボトムアップ的手法を基盤技術として利用し、様々なナノ材料の分子構造が示す表面・界面での相互作用を考慮することで、合目的的にナノ構造制御された光電子機能性高分子ハイブリッドナノ材料の開発を行っている。
実用化イメージ

0.4 nmで膜厚制御可能なSiO2超薄膜、発光型溶存酸素センサー、強誘電性高分子エレクトロニクスデバイスなど。

研究者

大学院工学研究科 応用化学専攻 環境資源化学講座(機能高分子化学分野)

三ツ石 方也  

Masaya Mitsuishi

表面改質

キャビテーションピーニング−泡で叩いて金属材料を強くする−

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 流体機械に致命的な損傷を与えるキャビテーション衝撃力を、逆転発想的に、金属材料の疲労強度向上に活用するキャビテーションピーニングを開発しました。また、表面層の亀裂発生・亀裂進展を評価するために荷重制御型平面曲げ式疲労試験機を開発し、キャビテーションピーニングにより下限界応力拡大係数範囲が1.9倍に向上することを実証しました。また、キャビテーションピーニングによる水素脆化抑止も実証しています。
実用化イメージ

用途に応じた複数のキャビテーションピーニング装置がありますので、キャビテーションピーニングの実用化に向けた共同研究を実施する企業を求めています。

研究者

大学院工学研究科 ファインメカニクス専攻 材料メカニクス講座(知的計測評価学分野)

祖山 均  

Hitoshi Soyama

溶融塩を用いた高温素材プロセッシング

前の画像
次の画像
特徴・独自性
  • 室温で固体のイオン結晶を加熱し、高温で溶融した液体を「溶融塩」と呼ぶ。金属アルミニウムは溶融塩中での電気分解で製造されており、産業界では大量に使用されている。その溶融塩を反応媒体として利用し、レアアース、チタン、シリコン、リチウム等、化学的に活性なレアメタルの製錬、リサイクル、表面改質法を研究している。日本でも実施可能な高付加価値製品の製造技術として、溶融塩技術を変貌させることを目指す。
実用化イメージ

業界としては、非鉄金属製錬、リサイクル、表面処理に従事する業界。用途としては、活性金属(合金)製造、廃棄物処理、耐酸化性コーティング等。

研究者

大学院工学研究科 金属フロンティア工学専攻 先端マテリアル物理化学講座(材料物理化学分野)

竹田 修  

Osamu Takeda

表面科学

表面科学に立脚した燃料電池電極触媒開発

前の画像
次の画像
特徴・独自性
  • 新規ナノデバイス開発には、異相界面における物理的、化学的相互作用の解明に基づいて、その構造設計指針を提示することが不可欠である。本研究分野では、よく規定された金属・合金表面系を物理的手法(超高真空下おける分子線エピタキシ)により構築した上で、走査プローブ顕微鏡や光電子分光による表面構造や電子状態解析し、得られる基礎的知見に基づいたナノ材料構造設計指針に関する研究を行っています。
実用化イメージ

従来の“触媒”を化学ナノデバイスとしてとらえ、その構築をボトムアップアプローチで進めていきたいと考えています。燃料電池自動車用の電極触媒開発など水素社会実現の鍵となる技術に関連しています。

研究者

大学院環境科学研究科 先端環境創成学専攻 環境創成計画学講座(環境材料表面科学分野)

和田山 智正  

Toshimasa Wadayama

表面硬化

構造用金属材料の組織と特性の制御

前の画像
次の画像
特徴・独自性
  • 金属材料の性質は、材料を構成する微細組織によって大きく変化します。我々は、従来型のバルク材の結晶構造・組成・粒径等の制御のみならず、結晶界面の構造やサブナノ領域の局所的組成など原子レベルでの先進的組織制御により、強度と延靱性に優れた構造用金属材料の設計・開発を、鉄鋼を中心に行っています。特に、結晶界面(粒界や異相界面)を制御する新しい観点から、相変態・再結晶を用いた結晶粒微細化の指導原理を構築するべく基礎的研究、豊富な資源としての軽元素の機能の基礎的理解と有効活用による鉄鋼およびチタン合金の更なる高機能化の研究を行っています。
実用化イメージ

熱処理や塑性加工を用いた鉄鋼や非鉄金属の高機能化、鉄鋼の表面硬化処理、金属組織に関する各種解析などを専門としており、この経験を生かして少しでも産業界の役に立てればと願っています。

研究者

金属材料研究所 材料設計研究部 金属組織制御学研究部門

古原 忠  

Tadashi Furuhara

表面力測定

表面力測定による材料ナノ界面科学の創製

前の画像
次の画像
特徴・独自性
  • 固- 液界面現象、そして表面間の相互作用を分子レベルで具体的に解明することを目的として研究しています。中心手段は、2つの表面間に働く相互作用力の距離依存性を直接測定する表面力測定、そして当研究分野で開発した液体ナノ薄膜の構造化挙動を高感度で評価できる共振ずり測定法です。従来困難であった不透明試料( 金属、セラミック、高分子など) が測定できるツインパス型表面力装置も独自開発し、電極界面の評価も行っています。
実用化イメージ

機能材料界面における表面電荷や吸着状態等の特性やナノレオロジー・ナノトライボロジーの評価が可能です。機械、潤滑剤、ナノ材料、塗料・シーラント、化粧品等の業種に対して共同研究・学術指導を行う用意があります。

研究者

未来科学技術共同研究センター 開発研究部 界面分子エンジニアリング

栗原 和枝  

Kazue Kurihara

微粒子

材料の微視的空間配置を精密制御する微粒子集積プロセスの開発

前の画像
次の画像
特徴・独自性
  • 異種材料を複合化した材料は、構成する材料の複合化状態によって、発現機能が大きく異なる。粒径や形状を制御して微粒子を合成できる技術と、合成した微粒子を設計通りに集積させる技術の融合によって実現する「ビルディングブロック工学」では、構成材料の3次元的な空間配置をメゾスコピックスケールで精密に制御することができ、従来の材料開発では得られなかった優れた機能の発現(相乗効果)や、新たな機能の発見も期待できる材料創製プロセスである。
実用化イメージ

触媒(光触媒も含む)や分離カラムなどの化学関連プロセスのみならず、薬物送達システムや診断薬など医薬関連、コンデンサーや電池などの電子材料関連、屈折率制御材料やセンサーなど光学材料関連分野への用途展開が見込まれる。

研究者

大学院工学研究科 化学工学専攻 プロセス要素工学講座(材料プロセス工学分野)

長尾 大輔  

Daisuke Nagao

微量放射能測定

極低放射能環境での高感度放射線計測

前の画像
次の画像
特徴・独自性
  • ニュートリノ科学研究センターでは、温湿度・振動などの点で非常に安定した地下1000mの空間に、1200立方メートルの有機シンチレータを主体とした装置を構築し、自然界と比べて1 兆倍も放射線の少ない極低放射能環境を実現しています。そこでは、超高感度での放射線計測、特にニュートリノ観測を実施しているほか、極低放射能を実現するための純化装置や高機能な放射線測定装置の開発も行っています。
実用化イメージ

極低放射能環境は希な現象の研究に適しているほか、微量放射能測定環境や放射線の生物進化への影響調査などへの活用が考えられます。また、ニュートリノ観測技術の原子炉モニターへの応用や、高感度放射線測定技術の医療への応用の可能性も考えられます。

研究者

ニュートリノ科学研究センター

井上 邦雄  

Kunio Inoue

疲労

多能性超音波照射装置の開発

前の画像
次の画像
特徴・独自性
  • 従来の超音波治療器は病変部に照射して、照射部位に限局した局所効果を得るものでした。我々は、病変部以外の部位に超音波を照射して全身性効果を発揮する多能性超音波照射装置を開発しています。微弱な周波数と超低出力強度の超音波を安定して固定照射する技術により、高血圧改善効果をはじめ、ストレス・疲労回復効果等、従来の超音波照射装置にはない様々な効能を発揮します。当装置を用いた未来医療産業の創生を目指しています。
実用化イメージ

製品化に伴い、医療機器、美容機器、家庭用機器などの販売を担う企業、または、それらのデバイスを用いたリラクゼーションサービス業を担う企業との連携を求めています。

研究者

サイクロトロン・ラジオアイソトープセンター 糖尿病制御学寄附研究部門

野々垣 勝則  

Katsunori Nonogaki

疲労強度

キャビテーションピーニング−泡で叩いて金属材料を強くする−

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 流体機械に致命的な損傷を与えるキャビテーション衝撃力を、逆転発想的に、金属材料の疲労強度向上に活用するキャビテーションピーニングを開発しました。また、表面層の亀裂発生・亀裂進展を評価するために荷重制御型平面曲げ式疲労試験機を開発し、キャビテーションピーニングにより下限界応力拡大係数範囲が1.9倍に向上することを実証しました。また、キャビテーションピーニングによる水素脆化抑止も実証しています。
実用化イメージ

用途に応じた複数のキャビテーションピーニング装置がありますので、キャビテーションピーニングの実用化に向けた共同研究を実施する企業を求めています。

研究者

大学院工学研究科 ファインメカニクス専攻 材料メカニクス講座(知的計測評価学分野)

祖山 均  

Hitoshi Soyama

貧血

赤血球分化の新規調節機構を標的とした斬新な貧血治療薬の開発

前の画像
次の画像
特徴・独自性
  • 貧血は世界で最も罹患率の高い疾患であるが、輸血やエリスロポエチンなどの既存治療法の効果はしばしば限定的である。我々は代謝酵素の抑制により、赤血球産生が促進される事を発見し、新たな貧血治療戦略を見出した。さらに、同酵素活性をモニターできる人工遺伝子を開発し、スクリーニング系を確立している。
実用化イメージ

産学連携により、この新しい制御機構を標的とする低分子化合物等の探索・評価を迅速に進め、斬新な貧血治療薬の開発へとつなげたい。また、ドラッグリポジショニングの可能性についても共同で検討していきたい。

研究者

大学院医学系研究科 医科学専攻 細胞生物学講座(生物化学分野)

五十嵐 和彦  

Kazuhiko Igarashi

品種

簡便・低コスト・高感度な一塩基多型(SNP)分析法による品種判別、種同定、突然変異選抜

前の画像
次の画像
特徴・独自性
  • 独自に開発したdot-blot-SNP 分析法や、磁気ビーズ法により、遺伝子の一塩基の変異を多数の植物個体について低コストで分析できる。分析技術の熟練が必要ではあるが、一度に数千個体の遺伝子型分析を低コストで行うことを可能とする。
実用化イメージ

作物育種の現場でのDNA分析による遺伝子型判定や突然変異体の選抜、さらに、種子の純度検定、品種の同定、異品種混入の同定等に利用することが出来る。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(植物遺伝育種学分野)

北柴 大泰  

Hiroyasu Kitashiba

品種改良

新規ハイブリッドライス育種基盤

前の画像
次の画像
特徴・独自性
  • 両親の良いところを併せ持った多収品種をつくる究極の育種法にハイブリッド品種(一代雑種品種)を作る技術がある。ハイブリッドライスを育種する基盤として、細胞質雄性不稔性と稔性回復システムが使われる。我々は東北大学オリジナルのCW型細胞質雄性不稔性イネの利用を検討し、その分子基盤を研究している。CW細胞質はこれまで不可能であったインディカ品種の雄性不稔化を実現できるので、高い利用価値が期待できる。
実用化イメージ

ハイブリッド品種のイネは、通常の品種と比較して30%ほどの収量増が期待され、その栽培面積は世界全体の13%を占めている。コメ産業の国際化を狙った日本独自の新規ハイブリッドライス育種基盤を提供できる。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(環境適応植物工学分野)

鳥山 欽哉  

Kinya Toriyama

品種鑑定

次世代DNA分析技術によるあらゆる生物の識別:個体・品種・集団・種・未知サンプル等の同定

前の画像
次の画像
特徴・独自性
  • 独自に開発した次世代DNA分析技術であるMIG-seq(MultiplexedISSR Genotyping by sequencing)法により、わずか数ngのDNA試料があれば、数千領域のDNA 情報を取得して、あらゆる生物を対象に個体・品種・集団・雑種・種・未知サンプルの同定を行うことができる。早く、安く、高い正確性で識別可能なのが大きな特徴である。
実用化イメージ

作物品種の育成者権保護のための品種鑑定や、品種・産地偽装検査等、生物の「識別」を必要とする広い用途に利用できる。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(森林生態学分野)

陶山 佳久  

Yoshihisa Suyama

ファーマコゲノミクス

ファーマコゲノミクス解析に基づく個別化薬物療法

前の画像
次の画像
特徴・独自性
  • 東北メディカル・メガバンク機構が構築した一般住民バイオバンクの全ゲノム配列情報を活用して、薬物代謝酵素における約1000 種の組換え遺伝子多型バリアントを網羅的に作製・機能評価する。これにより、これまで見落とされてきた薬物代謝酵素活性に影響を及ぼす重要な低頻度遺伝子多型を同定し、遺伝子型から表現型を高精度で予測できる薬物応答性予測パネルや独自のコンパニオン診断薬(核酸クロマトグラフィー法)を構築する。
実用化イメージ

核酸クロマトグラフィー法は尿糖や妊娠検査薬のようなものであり、キットが成功すれば、簡便で大型の検出機器を必要としないため、大病院だけでなく中小病院や診療所レベルでも遺伝子多型診断の導入が可能になると考えられる。

研究者

大学院薬学研究科 医療薬学専攻 医療薬学講座(生活習慣病治療薬学分野)

平塚 真弘  

Masahiro Hiratsuka