行のキーワード 386ワード

物性の設計と評価

原子配列の秩序性の定量的評価に基づく破壊予知と破壊制御

前の画像
次の画像
特徴・独自性
  • 原子レベルで材料の劣化損傷の発生メカニズムの解明,稼働環境における破壊を防止する方法の確立,安全安心な社会の実現への貢献のため,1)原子レベルでの材料結晶組織の分析可視化技術,2)原子レベルシミュレーションを活用した高信頼材料の設計,製造技術,3)カーボンナノマテリアルを応用した稼働機器や人体のヘルスモニタリング技術,4)レーザ光応用非破壊損傷評価技術等の開発などの研究を推進しています.
実用化イメージ

材料や構造物の破壊(狭義の破損に留まらず機能消失、性能低下も含む)メカニズム解明に基づく破壊予知と破壊制御という視点で共同研究や学術指導も積極的に推進している。

研究者

大学院工学研究科 附属先端材料強度科学研究センター 材料機能・信頼性設計評価研究部門(破壊予知と破壊制御研究分野)

三浦 英生  

Hideo Miura

物性評価

ナノスケールでの結晶構造・電子状態解析技術の開発と応用

前の画像
次の画像
特徴・独自性
  • 透過型電子顕微鏡(TEM)で、組成・結晶構造を評価した領域の精密構造解析、物性測定を可能とするため、独自の実験装置・解析技術開発(分光型収束電子回折TEM、高分解能EELSTEM、軟X線発光分光TEM)と、その物性物理学への基礎的応用(フラレン、ナノチューブ、ボロン化合物、GMR物質、準結晶等)を行っている。また、東北大オリジナルの軟X線発光分光装置の実用化を目指し、企業等との共同研究開発を継続中。
実用化イメージ

半導体、誘電体、金属などの顕微解析による構造・物性評価に関する共同研究や、分析技術に関する学術指導が想定される。

研究者

多元物質科学研究所 計測研究部門 電子回折・分光計測研究分野

寺内 正己  

Masami Terauchi

物質直接導入

生細胞内への物体、物質直接導入法

特徴・独自性
  • 生きた細胞内にミクロンサイズまでの物体を直接入れる方法はなかったが、今回、リポソームに内包し、生細胞と一過性に電気的に融合させることでリポソームから細胞質に直接、導入、留置する方法を確立した。任意のタンパク質、DNAも導入可能である。また、導入する物体表面をヒストンなどでコートすれば、細胞分裂後に核内に留置することもできる。また、鉄ビーズを用いれば、ネオジム磁石で動かすことも可能である。
実用化イメージ

細胞内に物体、物質を導入する方法は未だに容易ではないが、我々の方法は、簡便で高効率で、従来の方法を凌駕する。導入困難な巨大タンパク質の導入も可能で、核内にまで到達させる方法としては唯一の技術である。

研究者

加齢医学研究所 脳科学研究部門 神経機能情報研究分野

小椋 利彦  

Toshihiko Ogura

物体追跡

動きをとらえる高速リアルタイムビジョン技術

前の画像
次の画像
特徴・独自性
  • 産業応用において視覚処理・画像認識はますます重要な技術となっています。視覚は第一義的には姿・形をとらえる感覚ですが、それと同時に「動き」をとらえる感覚でもあります。当研究室では、動きをとらえるセンサとしてのビジョン技術という視点から、高フレームレートビジョンシステムとその応用、LED や高速プロジェクタ等の能動照明との連携、加速度センサ等の他のセンサとの情報融合などについて研究を進めています。
実用化イメージ

運動する対象の計測全般において、高フレームレートビジョンは強力なツールとなります。さらに高速プロジェクタや他のセンサと組み合わせることにより、3次元計測や動物体検出・同定などの技術が展開できます。

研究者

大学院情報科学研究科 システム情報科学専攻 知能ロボティクス学講座(知能制御システム学分野)

鏡 慎吾  

Shingo Kagami

沸騰

マイクロ流路内の相変化伝熱による高熱流束冷却機構

前の画像
次の画像
特徴・独自性
  • 発熱密度が増大しているシステムにおいて高性能な冷却を達成するために、微細な流路内の沸騰現象を制御し、熱輸送量を高める研究を行っています。沸騰現象の厳密な数値シミュレーションや一次元簡易沸騰シミュレーションを駆使し、理論的な予測に基づく冷却システムの設計を目指しています。
実用化イメージ

発熱密度が増大する情報通信システム用のデバイスや電気自動車等の電力制御システムの冷却が応用先として考えられます。また、理論解析を通じた既存の冷却システムの熱解析や最適化なども対象になります。

研究者

流体科学研究所 複雑流動研究部門 先進流体機械システム研究分野

岡島 淳之介  

Junnosuke Okajima

物理化学

ヒトの五感に訴える新製品・新分野を開発-亜臨界溶媒分離法における実験と理論の開発―

前の画像
次の画像
概要

超臨界/亜臨界抽出分離技術とは、水や二酸化炭素等の物質を高圧・高温にした際に、それらが液体と気体の両方の性質を併せ持った流体(超臨界/亜臨界流体)となることを利用し、その流体を用いてこれまで分けられなかった様々な物質を抽出分離できる技術です。特に亜臨界抽出では、より温和な条件での抽出分離を実現しています。有機溶剤を使用しないグリーンな抽出分離プロセスや装置、理論の研究開発を行っています。

従来技術との比較

開発した亜臨界溶媒分離法は,在来型の蒸留・抽出・分離等の化学工学プロセスとは異なり,大幅なスケールダウンを実現できることがメリットです。

特徴・独自性
  • 水,エタノール,二酸化炭素等の環境溶媒のみを製造工程に用いることができる
  • SDGsの推進
  • 日本発の医薬食品・飲料・化粧品・化成品等の製造工程のグリーンイノベーション
  • これまでに分離できなかった、利用できていなかった有用成分の利活用
実用化イメージ

低極性・高極性化合物や沸点の異なる化学物質の分離に長けています.クロマト法の精密性には及びませんが,物質群としての分離・分画操作には向いています.医薬食品・飲料・化粧品・化成品等の分野に応用できます。

研究者

大学院工学研究科 附属超臨界溶媒工学研究センター 溶媒要素技術部

大田 昌樹  

OTA Masaki

不妊治療

受精卵および幹細胞の新規品質評価法の開発

前の画像
次の画像
特徴・独自性
  • 走査型プローブ顕微鏡に基づく生体分子評価システムの探索に一貫して取り組み、プロテインアレイの構築とイムノアッセイへの応用を提案した。また、微小探針を改良して1細胞ごとのmRNA回収法を確立し、核酸-タンパク質の同時定量に取り組んでいる。走査型電気化学顕微鏡(SECM)を含むプローブ顕微鏡システムをツールとし、核酸、タンパク質、生体膜、細胞、初期胚を含む広い応用分野の開拓に成功した。これらの研究は初期胚研究への適用が期待できる。
実用化イメージ

体外受精-胚移植は、医療分野では不妊治療、畜産分野では優良家畜の効率的生産を可能としている。体外培養技術の進歩によりクオリティの高い胚の作出が可能となっているが、その後の子宮への胚移植、受胎率、産仔の成功率は依然として低い水準にある。これまで、受精卵の品質評価は形態観察に基づき行われてきた。我々は、単一受精卵ごとの呼吸活性を指標とした客観的な受精卵の品質評価法を開発した。我々の特許をもとに「受精卵呼吸測定装置」が装置化・実用化され、ウシ・マウス・ヒトの受精卵移植試験実施に至った。

研究者

大学院工学研究科 バイオ工学専攻 生体分子化学講座(生物電気化学分野)

珠玖 仁  

Hitoshi Shiku

プライバシ

ブロックチェーンを活用した安全なクラウド・ストレージ技術および個人データ取引のための実用的スマートコントラクト技術の開発

前の画像
次の画像
特徴・独自性
  • 不特定多数のユーザ端末が供出する空きストレージとブロックチェーンを活用して、高度な安全性を実現するP2P型ストレージの構築技術を開発しています。構築ストレージは、中央管理サーバの問題に起因する保存データの大規模情報漏洩リスクも回避可能です。また、暗号通貨を報酬と利用料に使用し、全ユーザの公平なストレージ利用も実現します。さらに、実用的なデータ商取引を可能にするスマートコントラクト技術も開発しています。
実用化イメージ

ブロックチェーン技術を活用したスマートコントラクトやフィンテックなどのBitcoin2.0 型アプリケーション、モノインターネット(IoT)、医療情報データベース関連などの開発を行う企業との共同研究を希望します。

研究者

データ駆動科学・AI教育研究センター データ基盤・セキュリティ教育研究部門

酒井 正夫  

Masao Sakai

フラクタル

高い空隙率をもつ多孔質SiCを簡便に作製

概要

炭化ケイ素のフラクタル多孔体
https://www.t-technoarch.co.jp/data/anken/T21-019.pdf

従来技術との比較

SiCの多孔質化には従来微細加工などが用いられてきた。本発明はSiCフラクタル多孔体をバルクで合成する手法を提供する。

特徴・独自性
  • Mg蒸気でシリコーン樹脂を還元することで、SiC多孔体を形成
  • フラクタル構造を持つ階層的な多孔体が形成される
  • 従来の微細加工では困難だった表面等に形成が可能
実用化イメージ

耐熱性のあるファインセラミクス多孔体として利用可能。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

プラスチック

難処理性高分子廃棄物の化学リサイクル

前の画像
次の画像
特徴・独自性
  • PET、PVC、HIPS 等の廃プラスチックを、付加価値の高い化学物質への転換を目的に、乾式及び湿式プロセスで種々の高分子廃棄物リサイクルの研究をしている。例えば、PETの脱カルボキシル化にて、高収率でベンゼンを得ることに成功。また、難熱性プラスチックやPVC の脱ハロゲン化プロセスを開発し、炭化水素として燃料利用等を検討している。さらに、抗菌性やイオン交換特性を付与することを目的に、PVC の塩素の一部を官能基で化学修飾する研究をしている。また、HIPSの熱分解による脱ハロゲン化で、高収率でスチレンを得ることができる。これらの技術を用いて、金属・プラスチック複合物から金属とプラスチックを効果的にリサイクルする化学プロセスを構築している。
実用化イメージ

廃棄物のリサイクルプロセスの開発に付随して起こる諸問題を解決するための方法を提供することができる。

研究者

大学院環境科学研究科 先端環境創成学専攻 自然共生システム学講座(資源再生プロセス学分野)

吉岡 敏明  

Toshiaki Yoshioka

プラズマ

イオン制御プラズマによるナノ・メディカル・アグリ応用技術開発

前の画像
次の画像
特徴・独自性
  • 人の手で触ることのできるような非平衡(低温)プラズマ中のイオン、電子、活性種(ラジカル)を制御して生成する技術(イオン制御プラズマ)を開発・活用することで、ナノエレクトロニクス分野ではナノ粒子・ナノカーボン・生体分子の複合物質を創製でき、医療分野では極めて低侵襲で細胞内に薬剤(抗がん剤)や治療用遺伝子を高効率で導入することができ、さらに農業分野では農薬に代わって殺菌を行うことができる。
実用化イメージ

イオン制御プラズマを、人に優しい低侵襲・高効率の遺伝子・薬剤導入装置、自然に優しい農薬不使用栽培システム、地球に優しい高効率電池電極材料創製等に応用する研究を行っている。プラズマの新たなナノ・メディカル・アグリ応用技術を産業界で活用したい企業や団体との共同研究を希望する。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(プラズマ理工学分野)

金子 俊郎  

Toshiro Kaneko

new五酸化二窒素の選択合成と応用

前の画像
次の画像
概要

数十W程度の電力で、空気を原料に五酸化二窒素 (N2O5) を選択的にその場合成・供給できるプラズマ装置を開発し、応用展開を推進しています。
本装置を用いて、これまでに下記の効果を既に実証しており、今後は医療・農業・環境・材料分野等でさらに幅広く応用探索を進めたいと考えています。
○殺菌・殺ウイルス効果
○植物免疫活性効果
○窒素施肥効果

従来技術との比較

N2O5は、熱や水分に弱く、保存が効かず集約生産に不向きである他,従来合成法には、高い危険性や環境汚染等の問題がありました。
安全な空気から合成できる本技術は現地生成・利用を可能にします。

特徴・独自性
  • 原料は空気のみ
  • 省電力・省メンテナンス
  • 100ppmを超える五酸化二窒素を供給可能
実用化イメージ

空気とわずかな電力しか用いない本技術は、持続可能な環境負荷の小さい分散アプリケーションとの親和性が高いです。上述の特徴を上手に活用した未来の技術として発展させていきたいと考えています。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(プラズマ理工学分野)

佐々木 渉太  

Shota Sasaki

プラズマアグリ

イオン制御プラズマによるナノ・メディカル・アグリ応用技術開発

前の画像
次の画像
特徴・独自性
  • 人の手で触ることのできるような非平衡(低温)プラズマ中のイオン、電子、活性種(ラジカル)を制御して生成する技術(イオン制御プラズマ)を開発・活用することで、ナノエレクトロニクス分野ではナノ粒子・ナノカーボン・生体分子の複合物質を創製でき、医療分野では極めて低侵襲で細胞内に薬剤(抗がん剤)や治療用遺伝子を高効率で導入することができ、さらに農業分野では農薬に代わって殺菌を行うことができる。
実用化イメージ

イオン制御プラズマを、人に優しい低侵襲・高効率の遺伝子・薬剤導入装置、自然に優しい農薬不使用栽培システム、地球に優しい高効率電池電極材料創製等に応用する研究を行っている。プラズマの新たなナノ・メディカル・アグリ応用技術を産業界で活用したい企業や団体との共同研究を希望する。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(プラズマ理工学分野)

金子 俊郎  

Toshiro Kaneko

プラズマ殺菌

大気圧プラズマ流による次世代滅菌法の開発

前の画像
次の画像
特徴・独自性
  • プラズマ滅菌は化学反応性、大気圧低温、低消費電力、低コスト、安全などの利点を有するため、既存の滅菌法の代替滅菌法として開発が進められている。本研究室では、様々な大気圧低温プラズマ流に対して、化学種生成輸送機構や滅菌効果について解明してきた。図1に示すように大腸菌にプラズマを照射すると、細胞内部よりカリウムが漏出してくる現象や細胞の高さが減少し変形することなどを明らかにしている。また、図2に示すように細管内部にプラズマを非一様に生成し、誘起される流れにより化学種を輸送して細管内壁を滅菌する手法を開発している。この技術を産業界で活用したい企業や団体との共同研究を希望する。
実用化イメージ

研究者

流体科学研究所 ナノ流動研究部門 生体ナノ反応流研究分野

佐藤 岳彦  

Takehiko Sato

プラズマ分析

ナノ粒子・クラスターのイオンモビリティ質量分析とその応用

前の画像
次の画像
特徴・独自性
  • 高真空中での分子ビーム技術を用いて、今までにない気相小集団化学種(クラスター・ナノ粒子) の質量分析、イオン移動度分析、レーザー光誘起反応、二分子衝突反応の研究を、自作の真空装置を開発して行っている。
実用化イメージ

気相の微粒子の同定や構造決定が必要な材料・環境分野、質量分析やイオンモビリティが重要なプロテオミクスが関係するバイオ関連・製薬業界など

研究者

大学院理学研究科 化学専攻 物理化学講座(理論化学研究室)

美齊津 文典  

Fuminori Misaizu

プラズモン

テラヘルツ帯新材料・新原理半導体デバイスの創出とそのICT応用

前の画像
次の画像
特徴・独自性
  • 光波と電波の融合域:テラヘルツ波帯での室温動作が可能な集積型電子デバイスおよび回路システムの創出に関する以下の研究開発を行っています。
  • 1. 半導体二次元プラズモン共鳴を利用した集積型テラヘルツ機能デバイス・回路の開発
  • 2. 新原理グラフェン・テラヘルツレーザートランジスタの開発
  • 3. グラフェンプラズモンを利用した室温テラヘルツ増幅・検出素子とそれらのBeyond 5G高速テラヘルツ無線通信応用
実用化イメージ

これら世界最先端の超ブロードバンドデバイス・回路技術は、次世代 6G, 7G 超高速無線通信や安心・安全のための新たなイメージング・分光計測システムのキーデバイスとして期待されています。

研究者

電気通信研究所 情報通信基盤研究部門 超ブロードバンド信号処理研究室

尾辻 泰一  

Taiichi Otsuji

プラットフォーム

プランクトン

キャビテーションによる水処理

前の画像
次の画像
特徴・独自性
  • キャビテーションを意図的に発生させた水を用いて水耕栽培を行うと、植物の活性が高まり、植物の成長を早めたり、植物の質を高めたりすることができます。また養殖などに有害なプランクトンを含む水をキャビテーションで処理すると、プランクトンを殺滅することができます。薬品を使うことなく、殺菌や滅菌などの水処理を行うことができるので、環境負荷が少ない水処理法です。低価格の設備で、かつ低ランニングコストでキャビテーションを発生できる装置を開発しているので、植物工場や養殖などの水処理に適用することが可能です。本技術を活用したい企業や団体との共同研究を希望します。あるいは本研究に関して興味のある企業へ学術指導を行うことも可能です。
実用化イメージ

研究者

大学院工学研究科 ファインメカニクス専攻 材料メカニクス講座(知的計測評価学分野)

祖山 均  

Hitoshi Soyama

プラント

プラントアクティベーター

植物免疫の分子機構に関する研究

前の画像
次の画像
特徴・独自性
  • 植物は病原体の感染に対して自らを守る防御システムを備えている。我々の研究グループでは、その防御システムを制御する抵抗性遺伝子の単離、抵抗性発現に関わるシグナル伝達系の解析、抵抗性発現により誘導される抗菌性タンパク質などの防御関連タンパク質をコードする遺伝子群の特定を行っている。さらに、単離したそれら遺伝子をマーカーとして利用するため、転写制御領域に発光タンパク質コード領域を連結した遺伝子を形質転換した植物を作出し、病害抵抗性の誘導を可視的に検知できるシステムを構築した(写真)。
実用化イメージ

農業現場で使用されている化学農薬は、生物毒性による環境への影響や薬剤耐性菌の出現などが問題となっており、食の安全・安心や、環境と調和した持続的な食料生産体制の確立の観点からも、従来の農薬に代わる病害防除手段として、植物のもつ防御応答システムを活性化する化合物の開発が注目されている。殺虫剤・防除剤等の薬品メーカー、漢方・生薬市場、サプリメント・食品メーカー等での活用が可能。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(植物病理学分野)

高橋 英樹  

Hideki Takahashi