行のキーワード 400ワード

放射光

newコヒーレントX線によるミクロ/ナノ空間階層構造イメージングの生体・農食・ソフトマテリアル試料への展開

前の画像
次の画像
概要

細胞や食品などのマイクロからナノスケールの構造を可視化し、生命現象や食感の構造基盤を解明するために、放射光イメージング技術やX線分析を用いた技術開発を進めています。また、不均一な化学状態や相変化を理解するために、スペクトルイメージングと機械学習による画像解析も行っています。

従来技術との比較

自然に近い状態での試料観察を目指しています。例えば大気環境下、湿潤環境下、クライオ環境下での計測技術や新しいイメージング法、低線量での撮影技術を進めています。

特徴・独自性
  • コヒーレントX線回折イメージング技術の開発と生命・食農分野への展開
  • 機械学習などを活用したスペクトル画像解析技術の開発
  • X線吸収分光や小角・広角X線散乱を用いたスペクトルイメージングと機械学習を活用した画像解析技術
  • 生命・食農分野での放射光利活用方法の開拓
実用化イメージ

条件ごとの食感の差異の可視化等から食品開発等への展開や、ソフトマテリアル、エネルギーデバイス等にも応用することが可能です。

研究者

国際放射光イノベーション・スマート研究センター 展開研究部門 農業・食品スマートラボ

高山 裕貴  

Yuki Takayama

new生体高分子が起こす反応・構造変化の可視化

概要

生命にとって重要な構成物質であるタンパク質は細胞情報伝達や生体内触媒反応など様々な役割を果たします。タンパク質立体構造はそうした機能と深く相関しており機能発現の際にどのような構造変化を起こすのか興味が持たれています。当研究室ではNanoTerasuの放射光やX線自由電子レーザー等の量子ビームを用いて、タンパク質の中で起こっている化学反応や構造変化を高い時間・空間分解能で可視化する技術を開発します。

従来技術との比較

従来の方法ではナノスケールのタンパク質がフェムト秒~ミリ秒といった高速で動く様子を原子レベルで捉えることは困難でした。

特徴・独自性
  • タンパク質の構造変化や反応を高い時間・空間分解能で可視化
  • 動的構造解析を基に新たな分子設計が期待される
  • 微結晶にX線自由電子レーザーを照射し、得られるX線回折像から蛋白質構造解析を行う手法である「シリアルフェムト秒結晶構造解析」により、フェムト秒X線レーザーにより放射線損傷が顕在化する前に回折像の取得が可能 
実用化イメージ

放射光やX線自由電子レーザー等の量子ビームを用いタンパク質の中で実際に起こっている化学反応や構造変化を高い時間・空間分解能で可視化する技術を開発し、得られた動的構造を基に新たな分子の設計を目指します。

研究者

多元物質科学研究所 有機・生命科学研究部門 量子ビーム構造生物化学研究分野

南後 恵理子  

Eriko Nango

newマグノンデバイスの開発と放射光を利用したスピン波観測技術の構築

概要

現在の電子デバイスは電子の移動を利用しているためジュール熱が発生し小型化・高速化が困難になるという課題があります。これを解決するためスピン波を利用するデバイスの研究開発を行っています。スピン波には、長距離伝搬が可能、絶縁体中でも伝搬が可能という利点があります。スピン波の観測のため、X線磁気円二色性によるスピン波の空間的分布を観測する技術を構築しています。

従来技術との比較

ジュール損失がない超低消費電力の次世代デバイスの実現を目指しています。高輝度の光源を有するナノテラスを用いることで、100 nm以下の高い分解能での観測が可能になることが期待できます。

特徴・独自性
  • スピン波(マグノン)伝搬を利用した、ジュール損失がゼロであるデバイスの研究
  • NanoTerasuの輝度が高い軟X線を使うことで高分解能のスピン波観測の可能性
  • スピン波の波の性質を用いた高周波デバイスや新しい計算手法への展望
実用化イメージ

広く応用が期待されるスピンデバイスにおけるスピン波観測技術を提供することで実用化を支援するとともに、磁性絶縁体を利用したマグノンデバイスによる電子デバイスの超低消費電力化の実現を目指しています。

研究者

国際放射光イノベーション・スマート研究センター 横幹研究部門 国際連携スマートラボ

河野 竜平  

Ryuhei Kohno

放射線検出器

新規機能性結晶、シンチレータ、圧電単結晶の開発とデバイス化

前の画像
次の画像
特徴・独自性
  • 放射線や光、熱、圧力等の外部からのエネルギーと結晶との相互作用に興味を持ち、㈰化学と物理の両面からの材料設計、㈪合成プロセスの開発、㈫相互作用の評価と理解、の3 つの切り口から先駆的な機能性結晶の研究を進めています。研究室内で異分野融合を行っており、要素技術の上流から下流までを垂直統合する体制で取り組んでいます。優れた特性を持つ結晶に関しては、そのデバイス化、実機搭載にも主体的に関わる点も特徴です。
実用化イメージ

シンチレータは、核医学、セキュリティ、核融合、資源探査、宇宙物理等、に用いる放射線検出器に応用されます。高発光量、高速応答、長波長発光、高エネルギー分解能、高温域での安定性など、ユーザーのニーズに合わせた材料設計が可能です。また、ランガサイト型圧電結晶は室温近傍の温度特性と低インピーダンスである特性を利用して、振動子、発振器、音叉等への応用も考えられております。また、高温域での特性に注目し、特に、自動車の燃焼圧センサー等への応用も検討されております。

研究者

金属材料研究所 材料設計研究部 先端結晶工学研究部門

吉川 彰  

Akira Yoshikawa

化合物半導体を用いた放射線検出器の開発

前の画像
次の画像
特徴・独自性
  • 材料純化、結晶成長、結晶加工、電極形成、検出器製作を一貫して行い、化合物半導体を用いた放射線検出器の開発を行っている。特に化合物半導体の一つである臭化タリウム(TlBr)に着目し研究を行っている。TlBr検出器は非常に高い検出効率を持ち、PET やSPECT 等の核医学診断装置やガンマ線CT、産業用X線CT、コンプトンカメラ等への応用が可能である。
実用化イメージ

化合物半導体成長技術はシンチレーション結晶育成、X線フラットパネルセンサー用直接変換膜製作へ応用が可能である。これらの結晶成長・検出器製作技術を産業界で活用したい企業や団体との共同研究を希望する。

研究者

大学院工学研究科 量子エネルギー工学専攻 粒子ビーム工学講座(放射線高度利用分野)

人見 啓太朗  

Keitaro Hitomi

放射線治療

リンパ節転移の予測および治療評価システム

前の画像
次の画像
特徴・独自性
  • 1. 圧力センサー(針, 光ファイバーなど)をリンパ節内に挿入し,リンパ節の転移リスクおよび治療の評価が可能
  • 2. 国内特許取得済
実用化イメージ

リンパ節転移の診断・治療システムの開発を目指す医療機器メーカーと共同研究

研究者

大学院医工学研究科 医工学専攻 治療医工学講座(腫瘍医工学分野)

小玉 哲也  

Tetsuya KODAMA

防除

青色光を用いた殺虫技術の開発

前の画像
次の画像
特徴・独自性
  • 可視光には複雑な動物に対する致死効果はないとこれまで考えられていたが、その常識を覆し、青色光に殺虫効果があることを明らかにした。LED などの照明装置を用いて、青色光を害虫の発生場所に照射するだけの殺虫方法であるため、クリーンで安全性の高い全く新しいケミカルフリーな害虫防除技術になることが期待される。可視光に殺虫効果があることを発見したのは世界初であり、他に類似のものが全くない独自の技術である。
実用化イメージ

農業、食品産業、畜産業、公衆衛生、一般家庭など様々な分野における害虫防除への利用を想定している。上記用途と関連する業界あるいは照明メーカーとの連携が考えられる。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(応用昆虫学分野)

堀 雅敏  

Masatoshi Hori

歩行者移動予測

人間と移動ロボットの共存

前の画像
次の画像
特徴・独自性
  • サービスロボットや自動運転車、パーソナルモビリティなど人間と共存する環境で動作する様々な新しい移動体が普及することが期待されています。本研究室では、これらの様々な移動体が安全かつ円滑に共存するための技術について研究しています。
  • 特に、人間の視覚的注意などの特性を考慮し、その動きを予測するという側面からアプローチしています。
実用化イメージ

サービスロボット、パーソナルモビリティ、自動運転車など、人間と共存する環境で動作する移動体の研究開発や、これらが安全に共存するための交通環境整備など。

研究者

大学院工学研究科 ロボティクス専攻 先進ロボティクス講座(先進ロボティクス分野)

田村 雄介  

Yusuke Tamura

保護膜

非フッ素系PTFE粒子分散剤

概要

非フッ素系PTFE水分散剤
https://www.t-technoarch.co.jp/data/anken/T19-448.pdf

従来技術との比較

PTFE粒子を水などの溶剤に分散させるためにはフッ素系分散剤が必要であったが、PFAS規制により仕様が制限されつつある。本発明は非フッ素系PTFE粒子分散剤を提供する。

特徴・独自性
  • カテコール系接着官能基を用いてPTFEに接着する分散剤を合成
  • PTFE等の低表面エネルギー粒子を水などに良好に分散
  • PFAS規制などで使用できない分散剤の代替として有望
実用化イメージ

PTFE粒子などの低表面エネルギー粒子は撥水剤やバインダーなどとして広く使用されている。本用途におけるPFASフリー化に貢献する。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

ポジトロン断層法

ポジトロン断層法(PET)を用いた機能・分子イメージング研究

前の画像
次の画像
特徴・独自性
  • PETを用いた機能・分子イメージングでは、生体臓器(ヒトや動物の脳、心臓、筋肉など)の代謝、血流、微量物質貯留、情報伝達機能などを対象が生きたままの状態で体外から測定できます。この特徴を生かして、疾患の早期診断や抗ヒスタミン薬などの治療薬の作用・副作用研究、運動・代替医療による健康増進研究などを進めております。
実用化イメージ

以下のようなテーマの産学連携が可能です。㈰さまざまな薬物や飲食物の摂取前後の体内変化の評価、㈪運動、代替療法、瞑想などが心身に与える効果の評価、㈫認知症早期診断研究など。
基礎から臨床への橋渡し研究、臨床研究法対応も進めており、物理、化学・薬学、工学と連携した幅広い研究・開発の展開が可能です。

研究者

サイクロトロン・ラジオアイソトープセンター サイクロトロン核医学研究部

田代 学  

Manabu Tashiro

補修

熱影響・相変態が生じない革新的補修・厚膜コーティング技術

前の画像
次の画像
特徴・独自性
  • コールドスプレー法は、金属粒子を溶融することなく固相状態のまま高速ガス流と共に基材へ衝突させ、成膜する手法です。本法は成膜時の相変態や熱影響の無い皮膜を得ることが特徴であり、これを用いた革新的な補修技術並びにコーティング技術の確立と得られた付着層の信頼性評価を実施しています。また、付着メカニズムおよび得られた皮膜の健全性を評価する目的で、ミクロ/ナノ組織観察および界面強度評価等を実施しています。
実用化イメージ

金属材料のみならず、最近では一部のセラミックスやポリマーの成膜が可能になっております。構造材料としてだけではなく、機能性材料の創製を含めた多方面の企業や団体との連携が可能です。

研究者

大学院工学研究科 附属先端材料強度科学研究センター エネルギー・環境材料強度信頼性科学研究部門(表面・界面制御強度信頼性科学研究分野)

小川 和洋  

Kazuhiro Ogawa

保磁力

磁石は地球を救う!-高性能永久磁石材料の開発(エネルギー・資源問題の解決に向けて)-

前の画像
次の画像
特徴・独自性
  • 永久磁石材料の高性能化と新材料開発を行っている。これまでの成果に未分離混合希土類-Fe-B系焼結磁石、HDDR現象による高保磁力希土類磁石粉末、再結晶集合組織による高性能Fe-Cr-Co系磁石の開発などがある。最近ではNd-Fe-B系磁石におけるDyの削減技術の開発や、永久磁石の自然共鳴がGHz 帯にあることに着目した新しい電磁波吸収体ならびにナノ粒子技術による高周波磁性材料の開発も行っている。
実用化イメージ

業界としては磁性材料に興味または生産している素材・材料関連、自動車関連、電気・電子関連、化学関連企業など。

研究者

大学院工学研究科 知能デバイス材料学専攻 情報デバイス材料学講座(スピン情報材料学分野)

杉本 諭  

Satoshi Sugimoto

北極

北極域先住民研究

前の画像
次の画像
特徴・独自性
  • 北極域とくにシベリア・アラスカなどの先住民の伝統文化の保全、気候変動の影響を文理融合のフィールドワークにより研究している。極地への適応という人類史的観点を踏まえてのアジア人類史に取り組むとともに、伝統文化の記録は文化財的価値をもつことからそのデジタル化と公開も行っている。北極圏で増加している洪水・森林火災・凍土融解などの事象がローカルな社会に及ぼす影響とその適応策を学際的に探求している。
実用化イメージ

北極域でのビジネスにおける企業の社会的責任(CSR)にあって、先住民の文化・社会の保全は重要な課題であり、またステークホルダーの一員である。現地情報や人権や多文化共生的観点からの助言が可能。

研究者

東北アジア研究センター 基礎研究部門 ロシア・シベリア研究分野

高倉 浩樹  

Hiroki Takakura

歩幅

ウェラブルセンサを用いた身体活動の評価

前の画像
次の画像
特徴・独自性
  • 身体活動時に装着した加速度センサをはじめとするウェラブルセンサの信号処理により身体活動の評価を行う研究。これまでに気圧センサと加速度センサにより、階段や坂道昇降の評価を可能とするアルゴリズム、加速度信号から歩幅を評価するアルゴリズムを提案、実証している。
実用化イメージ

通信機能の搭載あるいはスマートフォンなどへの実装により操作フリーで情報を処理し、わかりやすくユーザーに提示することが可能である。健康やスポーツ活動のモニタリングに利用可能である。

研究者

大学院医工学研究科 医工学専攻 社会医工学講座(健康維持増進医工学分野)

永富 良一  

Ryoichi Nagatomi

ホヤ

海洋・畜産バイオマスからエネルギー変換用炭素触媒を実現

概要

ホヤ殻由来セルロースと乾燥血粉を混合して焼成することで、酸素還元、酸素発生、水素発生用電気化学触媒能を持つカーボンアロイ触媒を合成。水電解や燃料電池、金属空気電池の電極触媒として応用可能。

従来技術との比較

白金代替触媒として開発されてきたカーボンアロイ触媒は従来合成有機化合物を焼成して得られる。本発明によれば高い触媒活性を持つカーボンアロイ触媒をバイオマスから合成できる。

特徴・独自性
  • ホヤ殻に含まれるセルロースナノファイバー(CNF)の炭化による炭素と血液中に含まれる鉄・窒素・リンなどが複合化された「ナノ血炭」を初めて合成。
  • 炭素の導電性とヘテロ元素の触媒活性により、レアメタルを用いた電極触媒に迫る酸素還元反応・酸素発生反応触媒活性を持つ両性電極触媒を実現。
  • 三陸地域の課題となっていた産業廃棄物の活用と、エネルギー循環社会に資する次世代エネルギーデバイス用高性能触媒材料の合成によりSDGsに貢献。
実用化イメージ

水電解や燃料電池などの水素システム、金属空気電池などのエネルギー貯蔵デバイス用のレアメタル代替電極触媒として活用できる。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

ポリエチレンテレフタレート

難処理性高分子廃棄物の化学リサイクル

前の画像
次の画像
特徴・独自性
  • PET、PVC、HIPS 等の廃プラスチックを、付加価値の高い化学物質への転換を目的に、乾式及び湿式プロセスで種々の高分子廃棄物リサイクルの研究をしている。例えば、PETの脱カルボキシル化にて、高収率でベンゼンを得ることに成功。また、難熱性プラスチックやPVC の脱ハロゲン化プロセスを開発し、炭化水素として燃料利用等を検討している。さらに、抗菌性やイオン交換特性を付与することを目的に、PVC の塩素の一部を官能基で化学修飾する研究をしている。また、HIPSの熱分解による脱ハロゲン化で、高収率でスチレンを得ることができる。これらの技術を用いて、金属・プラスチック複合物から金属とプラスチックを効果的にリサイクルする化学プロセスを構築している。
実用化イメージ

廃棄物のリサイクルプロセスの開発に付随して起こる諸問題を解決するための方法を提供することができる。

研究者

大学院環境科学研究科 先端環境創成学専攻 自然共生システム学講座(資源再生プロセス学分野)

吉岡 敏明  

Toshiaki Yoshioka

ポリ塩化ビニル

難処理性高分子廃棄物の化学リサイクル

前の画像
次の画像
特徴・独自性
  • PET、PVC、HIPS 等の廃プラスチックを、付加価値の高い化学物質への転換を目的に、乾式及び湿式プロセスで種々の高分子廃棄物リサイクルの研究をしている。例えば、PETの脱カルボキシル化にて、高収率でベンゼンを得ることに成功。また、難熱性プラスチックやPVC の脱ハロゲン化プロセスを開発し、炭化水素として燃料利用等を検討している。さらに、抗菌性やイオン交換特性を付与することを目的に、PVC の塩素の一部を官能基で化学修飾する研究をしている。また、HIPSの熱分解による脱ハロゲン化で、高収率でスチレンを得ることができる。これらの技術を用いて、金属・プラスチック複合物から金属とプラスチックを効果的にリサイクルする化学プロセスを構築している。
実用化イメージ

廃棄物のリサイクルプロセスの開発に付随して起こる諸問題を解決するための方法を提供することができる。

研究者

大学院環境科学研究科 先端環境創成学専攻 自然共生システム学講座(資源再生プロセス学分野)

吉岡 敏明  

Toshiaki Yoshioka

ポリテトラフルオロエチレン

非フッ素系PTFE粒子分散剤

概要

非フッ素系PTFE水分散剤
https://www.t-technoarch.co.jp/data/anken/T19-448.pdf

従来技術との比較

PTFE粒子を水などの溶剤に分散させるためにはフッ素系分散剤が必要であったが、PFAS規制により仕様が制限されつつある。本発明は非フッ素系PTFE粒子分散剤を提供する。

特徴・独自性
  • カテコール系接着官能基を用いてPTFEに接着する分散剤を合成
  • PTFE等の低表面エネルギー粒子を水などに良好に分散
  • PFAS規制などで使用できない分散剤の代替として有望
実用化イメージ

PTFE粒子などの低表面エネルギー粒子は撥水剤やバインダーなどとして広く使用されている。本用途におけるPFASフリー化に貢献する。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

ポリマー可塑化

超臨界流体の物性に立脚した抽出分離、洗浄、ポリマー加工

前の画像
次の画像
特徴・独自性
  • 超臨界流体に関する基礎的な物性として、高温高圧下での密度、粘度の測定と推算、高温での水素結合特性についての研究を行っている。また、それらを利用した応用技術として、天然物の分離、クリーニング洗浄、ポリマー可塑化を利用した塗膜生成、重質油改質、バイオマスのカスケード利用、それに藻類バイオマス利用技術についての研究を実施している。
実用化イメージ

洗浄技術:精密機械部品、光学部品など。
天然物分離:食品、サプリメント、香料。
ポリマー可塑化:機能性樹脂、電子部品材料など。

研究者

未来科学技術共同研究センター 開発研究部 超臨界ナノ材料技術の社会実装

猪股 宏  

Hiroshi Inomata

ホルモン

乳がんにおけるホルモン作用

前の画像
次の画像
特徴・独自性
  • 乳がんの発育進展には女性ホルモンが重要な役割を担っており、その作用を制御することで乳がんの治療が可能です。我々は乳がん組織を病理学的に解析し、乳がんにおけるホルモン作用の本質に迫ります。そして得られた知見を細胞培養や動物モデル等様々な研究手法を用いて多角的に検証します。このように病理学的解析と分子生物学的解析を研究の両輪とすることで、オリジナリティーにあふれた研究成果を生み出しています。
実用化イメージ

乳がんの予後や治療効果に関する新規検査方法の開発や新規薬剤の治療効果の評価等が可能と思われます。

研究者

大学院医学系研究科 医科学専攻 病理病態学講座(病理診断学分野)

鈴木 貴  

Takashi Suzuki