登録されている研究者 433人(研究テーマ449件)

液体流動を利用した新たなエネルギー変換

前の画像
次の画像
特徴・独自性
  • 2次元材料であるグラフェンの上を1滴の水が滑り落ちる、または連続した流水が流れるときグラフェンに起電力が生じる現象があり、これまでの研究によって発生する起電力が流速と水が接触する界面の面積に比例することがわかっています。この現象を利用してエネルギー、環境分野へ展開する研究を行っています。液体の流動から機械的な変換を経ずに電気エネルギーを得ることができる独創的な研究です。
実用化イメージ

従来とは異なるエネルギー変換機構と基にしており、新たなエネルギーハーベスティング技術となる可能性があります。また従来の発電技術とは相補的な関係となるため、環境資源の有効活用に適した研究です。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(固体電子工学分野)

岡田 健  

Takeru Okada

熱影響・相変態が生じない革新的補修・厚膜コーティング技術

前の画像
次の画像
特徴・独自性
  • コールドスプレー法は、金属粒子を溶融することなく固相状態のまま高速ガス流と共に基材へ衝突させ、成膜する手法です。本法は成膜時の相変態や熱影響の無い皮膜を得ることが特徴であり、これを用いた革新的な補修技術並びにコーティング技術の確立と得られた付着層の信頼性評価を実施しています。また、付着メカニズムおよび得られた皮膜の健全性を評価する目的で、ミクロ/ナノ組織観察および界面強度評価等を実施しています。
実用化イメージ

金属材料のみならず、最近では一部のセラミックスやポリマーの成膜が可能になっております。構造材料としてだけではなく、機能性材料の創製を含めた多方面の企業や団体との連携が可能です。

研究者

大学院工学研究科 附属先端材料強度科学研究センター エネルギー・環境材料強度信頼性科学研究部門(表面・界面制御強度信頼性科学研究分野)

小川 和洋  

Kazuhiro Ogawa

糖鎖精密認識レクチンによる糖鎖解析および細胞制御

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 糖鎖は細胞表面上に糖タンパク質や糖脂質として存在し、細胞間認識や制御など情報伝達機能に関わる。我々は、糖鎖認識分子である各種レクチンを海洋生物などから単離し、構造・機能を明らかにしてきた。例えば、魚類卵ラムノース結合レクチンは、Gb3 を介してIL1 など炎症性サイトカインを誘導する。また、マアナゴガレクチンの進化に基づく各種変異体を作成し、より精密な特異性を持つレクチンの開発にも成功している。
実用化イメージ

レクチンによる糖鎖プロファイリングによるiPS/ES細胞からの分化、がん化などの細胞の機能解析、細胞の分離。アポトーシスなど細胞制御への応用。抗ウィルス機能を利用した抗トリインフルエンザ資材開発等。

研究者

大学院農学研究科 農芸化学専攻 生物化学講座(酵素化学分野)

小川 智久  

Tomohisa Ogawa

大きな飽和磁化をもつα“-Fe16N2粒子粉末を実現

概要

6 MGOe以上のBHmaxを示すレアアースフリー強磁性粒子粉末
https://www.t-technoarch.co.jp/data/anken/T19-390_T19-706_T19-709.pdf

特徴・独自性
実用化イメージ

研究者

大学院工学研究科 電子工学専攻 超微細電子工学講座(スピン相関電子工学分野)

小川 智之  

Tomoyuki Ogawa

社会経済データの高度解析手法とニーズの解明

前の画像
次の画像
特徴・独自性
  • 公共交通の運営計画に役立つ利用者の行動分析を行ってきました。具体的には空港に出入りする交通量の観測値を異なる航空便を使う交通に分解する手法、混雑により潜在化した交通量をその地点を含む多数の地点の交通量から算定する手法などの、高度なデータ統計解析手法を開発してきましたが、それらは交通以外の多様なデータにも適用できる可能性があります。
実用化イメージ

交通をはじめとする公共サービスの需要分析のほか、大規模システムの挙動分析や商品ニーズの分析、マーケティングに活用したい団体や企業との共同研究を希望します。

研究者

災害科学国際研究所 災害人文社会研究部門 レジリエンス計画研究分野

奥村 誠  

Makoto Okumura

Exercise pill、Geroprotector

特徴・独自性
  • 老化は、高齢化社会日本の重要課題であり、むやみな寿命延長ではなく、健康寿命の延長を目指す必要がある。そのために、高齢者の骨格筋萎縮/ Frailty 抑制と老化そのものの抑制する薬剤の開発が急務である。我々は、Exercise pill、Geroprotector 活性を持つ小分子化合物の標的タンパク質の同定を行い、druggable な老化因子の機能解析、SBDDの基礎となるX線構造解析を行っている。
実用化イメージ

複数のExercise pill、Geroprotectorの標的タンパク質、X線共結晶構造からリード化合物を出発点に新しい化合物をデザインして創薬を目指す。

研究者

加齢医学研究所 脳科学研究部門 神経機能情報研究分野

小椋 利彦  

Toshihiko Ogura

生細胞内への物体、物質直接導入法

特徴・独自性
  • 生きた細胞内にミクロンサイズまでの物体を直接入れる方法はなかったが、今回、リポソームに内包し、生細胞と一過性に電気的に融合させることでリポソームから細胞質に直接、導入、留置する方法を確立した。任意のタンパク質、DNAも導入可能である。また、導入する物体表面をヒストンなどでコートすれば、細胞分裂後に核内に留置することもできる。また、鉄ビーズを用いれば、ネオジム磁石で動かすことも可能である。
実用化イメージ

細胞内に物体、物質を導入する方法は未だに容易ではないが、我々の方法は、簡便で高効率で、従来の方法を凌駕する。導入困難な巨大タンパク質の導入も可能で、核内にまで到達させる方法としては唯一の技術である。

研究者

加齢医学研究所 脳科学研究部門 神経機能情報研究分野

小椋 利彦  

Toshihiko Ogura

核内受容体PPARδアゴニスト

特徴・独自性
  • 運動模倣薬(Exercise pill)の開発は、高齢化社会のfrailty に対する解決策の一つである。Exercisepill 創薬のターゲットとして核内受容体PPARδが重要で、その安全なアゴニストの創薬が求められている。我々は、PPAR δ活性化の新しいメカニズム、アゴニストとしての新規小分子リード化合物を見出し、SBDD も行ってアゴニスト活性も確認した。
実用化イメージ

我々が同定した活性化メカニズム、新規小分子リード化合物をもとに、安全なPPAR δアゴニストの創薬が可能で、Exercise pill、肥満/糖尿病、anti-aging など、生活習慣病に対する新しいアプローチが可能となる。

研究者

加齢医学研究所 脳科学研究部門 神経機能情報研究分野

小椋 利彦  

Toshihiko Ogura

テラヘルツ帯新材料・新原理半導体デバイスの創出とそのICT応用

前の画像
次の画像
特徴・独自性
  • 光波と電波の融合域:テラヘルツ波帯での室温動作が可能な集積型電子デバイスおよび回路システムの創出に関する以下の研究開発を行っています。
  • 1. 半導体二次元プラズモン共鳴を利用した集積型テラヘルツ機能デバイス・回路の開発
  • 2. 新原理グラフェン・テラヘルツレーザートランジスタの開発
  • 3. グラフェンプラズモンを利用した室温テラヘルツ増幅・検出素子とそれらのBeyond 5G高速テラヘルツ無線通信応用
実用化イメージ

これら世界最先端の超ブロードバンドデバイス・回路技術は、次世代 6G, 7G 超高速無線通信や安心・安全のための新たなイメージング・分光計測システムのキーデバイスとして期待されています。

研究者

電気通信研究所 情報通信基盤研究部門 超ブロードバンド信号処理研究室

尾辻 泰一  

Taiichi Otsuji

RNAに対する選択性と結合力に優れる、水素結合認識型の新規蛍光色素を提供します

概要

RNAグアニン結合性蛍光色素
https://www.t-technoarch.co.jp/data/anken/T22-031.pdf

特徴・独自性
実用化イメージ

研究者

多元物質科学研究所 有機・生命科学研究部門 生命機能分子合成化学研究分野

鬼塚 和光  

Kazumitsu Onizuka

コーティング及び界面修飾に関する分子動力学アプローチ

特徴・独自性
  • 固・液の親和性や濡れ、熱抵抗、分子吸着等のメカニズムを解明し、コーティングや表面修飾などの技術によりこれを制御するための基礎研究を、分子動力学シミュレーションを主な手法として進めている。
  • 熱・物質輸送や界面エネルギー等の理論をバックグラウンドとして、フォトレジストのスピンコーティングからSAM(自己組織化単分子膜)や各種官能基による親水性・疎水性処理まで様々なスケールの膜流動・界面現象を対象としている。また、主に液体を対象として、その熱流体物性値を決定する分子スケールメカニズムや、所望の熱流体物性値を実現するための分子構造に関する研究を行っている。これらの研究に関して興味のある企業との共同研究や学術指導を行う用意がある。
実用化イメージ

研究者

東北メディカル・メガバンク機構 予防医学・疫学部門

小原 拓  

Taku Obara

創・省エネルギー無機材料の創製

前の画像
次の画像
特徴・独自性
  • 新しい材料の登場は、我々が予想もしない波及効果を生み出す力を秘めています。私たちの研究グループでは、化学結合や電子構造の理解に基づく材料設計、固体中のイオン移動を利用した材料創製プロセス、固相、液相、気相法など各種のプロセスを基盤技術として、エネルギー製造や省エネルギーを成し遂げる新材料を提供すべく、材料の設計から、製造プロセスの開発、プロトタイプ素子の作製までをカバーした研究を展開しています。
実用化イメージ

現在は、太陽電池、燃料電池を主なターゲットとし、酸化物半導体、プロトン伝導性電解質・電極材料などの研究を実施しています。新しい無機材料の創製技術の適用範囲は、これらに限定的されるものではありません。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 原子空間制御プロセス研究分野

小俣 孝久  

Takahisa Omata

エネルギー利用を目指した“水素化物”の基盤・応用研究

前の画像
次の画像
特徴・独自性
  • エネルギー利用を目指した“水素化物”の基盤・応用研究に取り組んでいます。主要なテーマは、燃料電池などの水素利用技術を支える高密度水素貯蔵材料の開発です。現在、軽量元素や特異なナノ構造を有する新たな錯体・合金・ペロブスカイト水素化物群を合成し、原子・電子構造解析なども駆使した多面的な研究を進めています。また、リチウム高速イオン伝導材料などの“水素化物”に関する広範な研究領域も開拓しています。
実用化イメージ

水素利用・貯蔵システムや次世代二次電池などの基盤材料開発を通して、素材・電気・エネルギーなどに関する産業展開に貢献するとともに、関心をお持ちの企業・団体などへの学術指導も積極的に実施しています。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

折茂 慎一  

Shin-Ichi Orimo

高加工性を有する新型銅系形状記憶合金

前の画像
次の画像
特徴・独自性
  • 実用形状記憶合金ニチノールと同等の形状記憶および超弾性特性を有し、約2倍の加工性を持つCu-Al-Mn系形状記憶合金を開発しました。この合金はニチノールの数分の1のコストで作製することができ、形状記憶処理に金型が不要なため、線以外の複雑な形状への加工・成形が可能です。最近、この合金を利用して着脱容易な「巻き爪矯正具」を開発・製品化し、2011 年から販売を始めました。
実用化イメージ

直径や厚さが0.1 〜 20mm もの線、棒、板材でも6%以上の優れた超弾性が得られる技術を確立し、現在制震部材への応用研究を進めています。医療、建築にかかわらず本合金の特性を利用したい用途があったら是非ご連絡下さい。

研究者

大学院工学研究科 金属フロンティア工学専攻 創形創質プロセス学講座(材料組織制御学分野)

貝沼 亮介  

Ryosuke Kainuma

動きをとらえる高速リアルタイムビジョン技術

前の画像
次の画像
特徴・独自性
  • 産業応用において視覚処理・画像認識はますます重要な技術となっています。視覚は第一義的には姿・形をとらえる感覚ですが、それと同時に「動き」をとらえる感覚でもあります。当研究室では、動きをとらえるセンサとしてのビジョン技術という視点から、高フレームレートビジョンシステムとその応用、LED や高速プロジェクタ等の能動照明との連携、加速度センサ等の他のセンサとの情報融合などについて研究を進めています。
実用化イメージ

運動する対象の計測全般において、高フレームレートビジョンは強力なツールとなります。さらに高速プロジェクタや他のセンサと組み合わせることにより、3次元計測や動物体検出・同定などの技術が展開できます。

研究者

大学院情報科学研究科 システム情報科学専攻 知能ロボティクス学講座(知能制御システム学分野)

鏡 慎吾  

Shingo Kagami

現場で、目視で、金属材料への水素侵入をリアルタイム検出

前の画像
次の画像
概要

金属材料に水素が侵入すると、材料の機械的特性が低下し脆性破壊することがある。(水素脆化)水素脆化の発生を事前に予測するためには、材料への水素侵入を検出する必要がある。本技術では、対象となる金属材料に「水素と反応して色が変わる高分子センサー」を成膜することで、材料に侵入した水素を目視で発見できる。高分子センサーは安価かつ容易に成膜可能なため、大型で形状が複雑なインフラ設備にも適用できると期待される。

従来技術との比較

従来、金属中の水素検出には大型で高価な装置を必要としていたため、現場における水素検出は困難であった。本技術の水素センサーは水素を視認可能にするため、既存設備に成膜するだけで水素の侵入を発見できる。

特徴・独自性
  • ・金属材料に侵入した水素をリアルタイムで可視化できる。
  • ・金属の腐食に伴い侵入した微量の水素でも検出できる。
  • ・安価かつ容易に成膜可能なセンサーを使用するため、既存の大型設備にも適用できる。
  • ・材料に侵入した水素を発見することで、水素脆化の防止と材料の長寿命化が期待される。
実用化イメージ

本技術によって、大型のインフラ材料に侵入した水素を容易に検出できる。既存設備でも、材料表面に水素センサーを成膜すれば材料に侵入した水素を目視で発見できるため、メンテナンスコストの削減が期待できる。

研究者

金属材料研究所 材料設計研究部 耐環境材料学研究部門

柿沼 洋  

Hiroshi Kakinuma

高温高圧条件でのアミノ酸のペプチド化と新規炭素繊維

前の画像
次の画像
特徴・独自性
  • 生物体内では酵素などの作用でアミノ酸がペプチド化される。掛川研究室では無水、高温高圧環境下で触媒なしにアミノ酸の高重合度ペプチド生成に成功してきている。重合が難しいとされていたグリシンでは11量体、アラニンでは5量体など重合度の世界記録を作ってきている。アラニン5量体は、クモの糸に代表される重要な硬質「炭素繊維」であり、本研究は新規炭素繊維開発に有効と考える。
実用化イメージ

本研究を応用することで、切れないペプチド繊維(アラニンペプチド)と柔軟性のあるペプチド繊維(グリシンペプチド)を組み合わせることで、固くて伸びる新規炭素繊維を作り出せる可能性がある。

研究者

大学院理学研究科 地学専攻 地球惑星物質科学講座

掛川 武  

Takeshi Kakegawa

難水溶化という従来の逆の分子設計に基づく新規ナノ薬剤の創出

前の画像
次の画像
特徴・独自性
  • プロドラッグ分子のみで構成されるナノ粒子『ナノ・プロドラッグ』を提唱し、疾患部位への高効率なドラッグデリバリーが可能な抗がん剤や点眼薬の開発を行っています。『ナノ・プロドラッグ』は、難水溶性にする薬剤設計指針に基づき化合物合成したプロドラッグ分子を、独自の有機ナノ粒子作製手法である『再沈法』に共することで、粒径100 nm以下で制御できます。現在、薬理効果の評価、生体内・細胞内動態に取り組んでいます。
実用化イメージ

『再沈法』は薬剤化合物に限らず、様々な有機分子をナノ粒子化する汎用性の高い手法です。有機ナノ粒子を作製制御し評価する技術を持っており、有機ナノ粒子の物性評価に関する共同研究を希望します。

研究者

多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター 有機・バイオナノ材料研究分野

笠井 均  

Hitoshi Kasai