登録されている研究者 444人(研究テーマ434件)

高性能な小型センサ・アクチュエータの設計、製造とテスト

前の画像
次の画像
特徴・独自性
  • 金属ガラスやナノ構造などの新しい種類の材料をマイクロテクノロジと統合して、音響センサやアクチュエータ、熱電発電およびウェハレベルパッケージ等の新規デバイスの研究/ 開発を行っている。これらはマイクロ・ナノ・エレクトロ・メカニカル・システム(MEMS / NEMS)と呼ばれ、今日のスマートフォンや自動運転、ドローン等に欠かせない技術となっている。学内外のパートナーと連携して基礎的な材料/プロセス技術からパッケージングや信頼性等、産業に移転可能な実用化技術までを開発している。
実用化イメージ

マイクロシステム分野で幅広い産学連携が可能である。信頼性、歩留り等、重要な項目で産業へ技術移転が可能なレベルにプロセス、デバイス、システムの開発を最適化ができる。フラウンホーファー研究機構と協力実績があり、産学連携において幅広いプロジェクト要件への対応や複雑なシステムソリューションを提供することができる。

研究者

マイクロシステム融合研究開発センター

Froemel Joerg Eckhardt  

Froemel Joerg Eckhardt

青色光を用いた殺虫技術の開発

前の画像
次の画像
特徴・独自性
  • 可視光には複雑な動物に対する致死効果はないとこれまで考えられていたが、その常識を覆し、青色光に殺虫効果があることを明らかにした。LED などの照明装置を用いて、青色光を害虫の発生場所に照射するだけの殺虫方法であるため、クリーンで安全性の高い全く新しいケミカルフリーな害虫防除技術になることが期待される。可視光に殺虫効果があることを発見したのは世界初であり、他に類似のものが全くない独自の技術である。
実用化イメージ

農業、食品産業、畜産業、公衆衛生、一般家庭など様々な分野における害虫防除への利用を想定している。上記用途と関連する業界あるいは照明メーカーとの連携が考えられる。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(応用昆虫学分野)

堀 雅敏  

Masatoshi Hori

ブレインモルフィックコンピューティングハードウェア

前の画像
次の画像
特徴・独自性
  • 脳が特異的に持つ機能(例えば、意識/無意識過程、自己、選択的注意など)を、これまでの情報科学的な方法とは異なり、デバイスの物理的な特性・ダイナミクスを用いて直接的に構築することにより、小型高効率高性能な脳型ハードウェアの開発を行う。具体例としては、カオスニューラルネットワークリザバー、高次元複雑ダイナミクスによる最適化、スピン軌道トルクデバイスによるニューラルネットワーク等である。
実用化イメージ

この脳型ハードウェアは、ユーザ個人の情報の学習が必須なエッジ端末に有効で、例えば、補聴器や入れ歯に内蔵して心電や脳波、唾液成分などの学習により、異常検知を行う見守りデバイスなどへの応用が期待できる。

研究者

電気通信研究所 人間・生体情報システム研究部門 ソフトコンピューティング集積システム研究室

堀尾 喜彦  

Yoshihiko Horio

レアメタルフリー高性能蓄電池の先端ナノテクノロジー

前の画像
次の画像
特徴・独自性
  • 高容量・高出力・高安全性・低コストの次世代蓄電エネルギーデバイスであるポストリチウムイオン電池を実現するために、単原子層物質グラフェン、金属硫化物ナノシート、ナノ結晶活物質、ナノ粒子、ナノ多孔材料などの新しい機能材料の開拓とデバイス応用を研究する。全固体型リチウム二次電池、マグネシウム電池、燃料電池、大容量キャパシタ、ウェアラブル電池などの高性能電極材料・デバイス創製の精密化学プロセスを研究する。
実用化イメージ

ポストリチウムイオン電池および革新的エネルギー材料開発を研究シーズとして素材産業、電池メーカー、電気自動車企業、スマートグリッドや再生可能エネルギー等の電力ビジネス企業との共同研究を積極的に推進する。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター エネルギーデバイス化学研究分野

本間 格  

Itaru Homma

情報セキュリティ技術とその応用

前の画像
次の画像
特徴・独自性
  • 実世界とサイバー空間のコンピューティングが融合する次世代ICT 社会に向けた情報セキュリティ技術の研究を行っています。特に、暗号や秘密計算等のセキュリティ機能を超高速・極低電力で行うHWおよびSWコンピューティング、システムを各種物理攻撃(システムに物理的にアクセスして行う攻撃)から守るセキュア実装技術、システムの利用環境や応用分野に応じたセキュリティ最適化技術の関する研究を中心に行っています。
実用化イメージ

情報セキュリティ技術の分野における産学連携を進めることができます。特に、組込みシステムセキュリティの先端的知見・技術を活かして、これまで多くの国内外企業、大学、研究機関などと連携した実績があります。

研究者

電気通信研究所 情報通信基盤研究部門 環境調和型セキュア情報システム研究室

本間 尚文  

Naofumi Homma

振動制御

前の画像
次の画像
特徴・独自性
  • 振動から取り出したエネルギーを使う「自家発電」による振動制御なので、「セルフパワード振動制御」と呼ばれます。回収エネルギーは余りますから、広範囲な用途に使えます。例えば、無電源通信・振動発電・振動エネルギーハーベスティング・ヘルスモニタリングの実施なども可能です。宇宙工学からスピンオフした技術です。高性能な振動発電としても使えます。
実用化イメージ

振動低減・ヘルスモニタリング・無電源無線通信
・ 工場の定常的な振動(回転機械・壁)
・ 電源コードが届かない回転体
・ 人から離れた橋梁・高架下・インフラ全般
・ 低周波騒音対策(防音壁など)

研究者

大学院工学研究科 航空宇宙工学専攻 宇宙システム講座(宇宙構造物工学分野)

槙原 幹十朗  

Kanjuro Makihara

光を利用した低侵襲治療・診断システムの開発

前の画像
次の画像
特徴・独自性
  • 細く柔軟な光ファイバを内視鏡に挿入して患部にレーザ光を照射する低侵襲治療や、内視鏡を用いて光学的な診断を行うための装置や技術についての研究を行っています。また、これらの治療・診断に用いるための光ファイバとして、通常のガラス光ファイバの他に、強力なレーザ光や幅広い波長の光の伝送が可能な、中空光ファイバと呼ばれる特殊な光ファイバを用いた治療・診断システムの研究開発も行っています。
実用化イメージ

医療機器メーカーをはじめ、本分野への新規参入を検討している電子機器、通信装置、および計測機器メーカーなどが連携先として考えられます。

研究者

大学院医工学研究科 医工学専攻 医療機器創生医工学講座(医用光工学分野)

松浦 祐司  

Yuji Matsuura

非接触エネルギー伝送を用いた産業機器・医療機器の開発

前の画像
次の画像
特徴・独自性
  • 独自技術を用いた非接触電力伝送システムを中心に数ワットから数十キロワットクラスの幅広い開発を行っている。産業機器ではモバイル機器を始めEV や工場内搬送装置に至る幅広い対応が可能である。医療機器では人工心臓への電力伝送や、主に四肢不自由者の運動機能再建を目指す機能的電気刺激装置(FES)の開発、がん治療として体内の温度計測を必要としない小型埋込素子を用いたハイパーサーミアの開発を行っている。
実用化イメージ

産業・医療用途共に、独自の信号伝送システムも併せて開発を行い実用化している。

研究者

災害科学国際研究所 レジリエントEICT研究推進部門 レジリエントEICT

松木 英敏  

Hidetoshi Matsuki

new光学式精密運動計測センサおよび外部標準が不要な校正法の開発

概要

広波長帯域光源を用いた角度センサに対して、用いられる回折格子の格子定数や検出器の設置誤差などを外部の測定器なしで決定する方法を開発した。本手法は上位の参照基準が不要となる方法であり、光周波数コムを用いた測定とも相性が良い。

従来技術との比較

広波長帯域光源を用いた角度センサでは、光周波数コムのような周波数高精度光源を用いても、用いる回折格子の格子定数や検出器の設置誤差などを既知とするか外部の測定器で校正して測定を行っていた。

特徴・独自性
  • 移動ステージやロータリエンコーダなどの校正に用いることができる正確な角度計測が可能。
  • エンコーダなどに用いる回折格子定数の10ピコメートルレベルの決定が可能。
  • 原子時計と光周波数コムを組み合わせた角度計測に適用することで、研究室内で外部標準の不要な校正された角度計測系が構築可能。
実用化イメージ

・波長測定精度の向上には光周波数コムの高速・高安定化技術が必要であり、これらの技術を持つ企業等との共同研究を希望。
・トレーサビリティ認定に本技術を適用可否について検討できる企業等とも共同研究を希望。

研究者

大学院工学研究科 ファインメカニクス専攻 ナノメカニクス講座(精密ナノ計測学分野)

松隈 啓  

Hiraku Matsukuma

サプライチェーンを通じた資源利用と関連するリスクの可視化

前の画像
次の画像
特徴・独自性
  • マテリアルフロー解析、産業連関モデルに基づくサプライチェーン解析により資源の流れを明らかにし、資源採掘・精錬・輸送に関わるサプライチェーンの各拠点、経路の各属性別リスクデータとの融合を行い、我が国の科学技術イノベーション政策、資源安全保障に寄与する知を生み出します。
実用化イメージ

これまで共同研究・連携を行った経験があるのは鉄鋼産業、自動車産業です。省資源化技術導入による環境影響評価を行いたい行政機関や事業者との連携も積極的に行っていきたいと思っております。

研究者

大学院環境科学研究科 先進社会環境学専攻 環境政策学講座(環境・エネルギー経済学分野)

松八重 一代  

Kazuyo Matsubae

スピン流の方向と大きさを光で自在に制御可能!

概要

磁気メタマテリアル、スピン流制御装置及びスピン流制御方法
https://www.t-technoarch.co.jp/data/anken/T20-3091.pdf

従来技術との比較

特徴・独自性
実用化イメージ

研究者

大学院理学研究科 物理学専攻 量子物性物理学講座(光物性物理分野)

松原 正和  

Masakazu Matsubara

実験心理学の原理から人間の行動を理解する

前の画像
次の画像
特徴・独自性
  • 人の行動情報をセンシングし、人の意図や心身状態、人間関係を読み取ろうとする動きが進んでいます。このような状況を踏まえ、本研究室では、視線計測技術などを用いた実験心理学的手法によって人の身体行動に内在する心の理解に関する認知機能の解明に取り組んでいます。
実用化イメージ

私たちは、日常の中で、極めて効率的な身体行動を様々な状況で柔軟かつ容易に実現していますが、なぜこのようなことが可能なのでしょうか? この問題は、認知科学、神経科学、リハビリテーション医学、スポーツ科学、ロボット工学などの様々な研究分野で取り組まれている重要な問題の一つです。 効率的な身体行動の実現には、目に見える「物理的な身体」ではなく、目に見えない「心の中の身体」(自己身体の気づき)が深く関与することを見出しており、「心の中の身体」のメカニズムと機能的役割の解明を進めています。

研究者

大学院情報科学研究科 応用情報科学専攻 応用生命情報学講座(認知情報学分野)

松宮 一道  

Kazumichi Matsumiya

固液界面真空プロセスの開発とその応用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 様々な物質の液体状態を、高真空環境下で安定化させ、そのマイクロ/ナノレベルの成形技術や診断技術の開発,また,物性測定による新現象の発見,およびそのプロセス応用に取り組んでいる。特に、膜厚が数nmのイオン液体膜の作製や単結晶品質のSiCなどの無機薄膜の高速VLS成長、イオン液体を介した有機半導体、高分子薄膜・結晶材料のプロセスは,世界的にも類を見ない独自技術である。
実用化イメージ

wet系プロセスの利点を真空プロセスに取り入れた次世代の半導体プロセスへの応用開発、有機半導体の新しい精製技術の開発,イオン液体を介した蒸着法による再結晶が困難な有機化合物の単結晶の試作など。

研究者

大学院工学研究科 応用化学専攻 原子・分子制御工学講座

松本 祐司  

Yuji Matsumoto

メタボロミクスによる診断マーカー探索

前の画像
次の画像
特徴・独自性
  • 種々の先天性代謝異常や肝胆道系疾患によってコレステロールの恒常性が破綻すると、体液中のコレステロール代謝物プロファイルが変化し、増加した代謝物が抱合体として血液や尿中に現れる。抱合形式毎に特徴的なフラグメントパターンを活用し、LC/ESI-MS/MS を用いて、特定の抱合型代謝物を群特異的かつ網羅的に解析可能となった。この手法を用いることにより、様々な疾患の診断マーカー候補分子を効率的に探索できる。
実用化イメージ

候補分子の診断マーカーとしての有用性が検証された場合、スクリーニング検査が必要になる。抗体や酵素を用いたバイオアッセイ系の開発において企業と連携する可能性がある。

研究者

病院 薬剤部

眞野 成康  

Nariyasu Mano

温度勾配型マイクロフローリアクタによる着火・燃焼特性の測定・評価

前の画像
次の画像
特徴・独自性
  • 多様な燃料の着火・燃焼特性を客観評価する新原理の試験法を開発・実用化した。流れ方向に温度が徐々に上昇するよう外部から温度分布制御した微小流路を用いる。燃料が温度上昇と共に低温(600K程度)から酸化剤と反応開始、反応完了(〜1300K)までの過程(通常は高速の過渡現象「着火現象」)を、温度域別に分離した定常な複数反応帯(火炎クロマトグラフィ)として安定化することに成功した。
実用化イメージ

オクタン価やセタン価推定、天然ガス成分別の反応特性解明を既達成。簡便な標準的燃焼化学反応の試験装置として、各種燃焼器開発への適用、不明燃料の着火特性解明にも応用可能である。

研究者

流体科学研究所 附属統合流動科学国際研究教育センター エネルギー動態研究分野

丸田 薫  

Kaoru Maruta

事業継続マネジメント(BCM)

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 事業継続マネジメント(BCM) は、企業や公的組織が災害、大事故、テロ、感染症などで甚大な被害を受けた際にも、重要業務を継続または早期復旧するための対応戦略である。また、この計画がBCP で、政府、経済団体等が導入・改善を積極的に推進している。当研究室では、BCM の普及策や改善策を研究しており、政府のガイドライン策定にも深く関与している。仙台で産官学の勉強会、企業との共同研究も行っている。
実用化イメージ

BCM・BCPを導入、改善しようとする企業・組織に求めに応じ助言を行うことができるほか、企業グループなどと連携した普及促進や実践的改善の取組、個別企業との共同研究が想定できる。

研究者

災害科学国際研究所 防災実践推進部門 防災社会推進分野

丸谷 浩明  

Hiroaki Maruya

ナノ粒子・クラスターのイオンモビリティ質量分析とその応用

前の画像
次の画像
特徴・独自性
  • 高真空中での分子ビーム技術を用いて、今までにない気相小集団化学種(クラスター・ナノ粒子) の質量分析、イオン移動度分析、レーザー光誘起反応、二分子衝突反応の研究を、自作の真空装置を開発して行っている。
実用化イメージ

気相の微粒子の同定や構造決定が必要な材料・環境分野、質量分析やイオンモビリティが重要なプロテオミクスが関係するバイオ関連・製薬業界など

研究者

大学院理学研究科 化学専攻 物理化学講座(理論化学研究室)

美齊津 文典  

Fuminori Misaizu

スピントロニクス材料と情報通信技術への応用

前の画像
次の画像
特徴・独自性
  • 1. マンガン系磁性材料を主とする新薄膜磁性材料の研究開発(図1)
  • 2. フェムト秒パルスレーザーに対する磁性体の超高速応答の基礎研究(図2)
実用化イメージ

次のような、電子・通信産業と産学連携の可能性があります。
○ 新材料を用いたトンネル磁気抵抗素子の、大容量磁気メモリ、磁気ストレージ、ミリ波〜テラヘルツ波通信素子への応用。
○ フェムト秒パルス光を用いたテラヘルツ波輻射への応用。
○ パルス光を用いた磁気スピン波の制御と論理デバイスへの応用。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

水上 成美  

Shigemi Mizukami

生体機能の可視化および制御技術の開発

概要

従来技術との比較

特徴・独自性
  • 生体分子の機能を正しく理解するには他の生体分子との相互作用が保たれた状態、すなわち生きた状態で観察することが重要です。そこで、有機化学および蛋白質科学の双方からのアプローチにより新たな機能性分子を開発し、生体分子の可視化および光を用いた機能制御に取り組んでいます。特に、オルガネラ内の分子やイオン濃度の定量や、蛋白質機能を光操作するケージド化合物あるいはフォトスイッチ化合物の開発に実績があります。
実用化イメージ

研究者

多元物質科学研究所 有機・生命科学研究部門 細胞機能分子化学研究分野

水上 進  

Shin Mizukami

レーザファブリケーションによる高機能バイオインタフェースの創成

前の画像
次の画像
特徴・独自性
  • 本研究では、レーザ照射を利用して材料表面に様々な機能を付与する手法の開発を行っている。とくにレーザを材料に照射した際に生じる現象を、シミュレーションおよび実験的な手法を用いて明らかにし、新しい機能性インターフェースの創成を行っている。
  • 本研究成果は、生体・医療用デバイスへの応用を始めとし、幅広い分野への波及効果が期待できる。
  • ■ 高機能バイオインターフェースの創成
  • 人工臓器や人工血管、あるいはバイオインプラントなどに利用される材料は、生体組織や細胞に対する高い親和性が求められる。そこで本研究室では、レーザ照射による表面創成プロセスにより「生体に優しい」表面づくりにも取り組んでいる。
  • 本手法により、チタン系材料に対して生体に活性な機能を付与することに成功している。このような機能を持つ材料を生体内に埋入すると、表面にハイドロキシアパタイト(骨や歯の主成分)が自然に析出する。この方法を利用すれば骨との固着性に格段に優れるインプラントを作製することが可能であり、人工関節や歯科インプラントなどへの応用が期待できる。
  • 本研究ではこのような手法を駆使し、バイオ分野への新たなブレークスルーを目指す。
実用化イメージ

研究者

グリーン未来創造機構 グリーンクロステック研究センター

水谷 正義  

Masayoshi Mizutani