登録されている研究者 445人(研究テーマ444件)

AI・ロボット時代における教員のワークライフバランスと学校の働き方改革

前の画像
次の画像
概要

世界的に教員不足が深刻化しており、日本では教員の多忙化もまだ完全な解決には至っていません。私の研究室では、教員の業務を教育行政学や医学の観点から正確に測定・分析した上で、校長・教頭によるタイムマネジメントや学校の労働安全衛生に関するコンサルティングのほか、ICT/AI/ロボットを活用した業務改善のお手伝いをします。

従来技術との比較

教員の労働時間を業務別・時刻別に測定することが可能です。紙媒体もしくはウェブアンケートに対応しています。従来の研究や技術では困難だった教員の労働時間の正確な測定が低コストで可能です。そのため、課題の発見に至る時間が短縮でき、的確なコンサルテーションがいち早く実行でき、改善策の社会実装までの時間が短く済みます。

特徴・独自性
  • 長年、教員の労働時間に関する基礎研究を行ってきました。2006年、2016年、2022年に実施された文部科学省「教員勤務実態調査」の中心メンバーとして労働時間の正確な測定技術の開発に従事してきました。その過程で、長時間労働や多忙感をもたらす要因をこれまで明らかにしてきました。ここ最近は、医学との共同研究を進めており、教員が心身ともに健康を維持できるようなマネジメントのあり方を追求しています。
実用化イメージ

学校の業務効率化や教員の健康増進に寄与したいと思います。
校務運営システムの開発企業、労働者の健康管理デバイスの開発企業、ICT、AI、ロボットを学校に導入しようとする企業との連携の可能性があります。

研究者

大学院教育学研究科 総合教育科学専攻 教育学講座(教育政策科学)

青木 栄一  

AOKI Eiichi

ビッグデータ時代の画像コンピューティングとセキュアICT

前の画像
次の画像
特徴・独自性
  • 第一に、実世界にあふれる膨大な画像データのセンシング・処理・認識・解析の研究を行っています。特に、サブピクセル分解能の画像解析を可能にする「位相限定相関法」を発案し、個人識別(顔、指掌紋、FKP、虹彩、X 線画像の認識)、マシンビジョン、多視点3D 計測、画像検索、医用画像解析などに応用しています。
  • 第二に、世界最高性能の耐タンパー暗号処理技術および生体認証技術を核にしたセキュアICT の基盤システムを研究しています。
実用化イメージ

画像情報工学、情報セキュリティ、バイオメトリクス、LSI、組込み技術の分野における産学連携を進めることができます。既に多数の企業、大学、研究機関、医療機関などの研究者や技術者が、分野を問わず訪れています。情報知能システム(IIS)研究センターのスタッフがご相談を受け付けます。
info@iisrc.ecei.tohoku.ac.jp

研究者

役員

青木 孝文  

Takafumi Aoki

環境にやさしい都市構造と環境配慮行動の促進に関する研究

前の画像
次の画像
特徴・独自性
  • 低環境負荷社会への移行には、技術革新以上に私たちの意識改革が必要です。そのためには、リサイクル等も含め、QOL(Quality of Life)を低下させない範囲で資源消費の最小化を図ることが重要になります。本研究では、主に環境負荷の小さなライフスタイルやコンパクトシティを実現させる方策について、心理学をベースに検討しています。つまり、心理学を使い、人の行動をより環境にやさしいものに変える方策を検討しています。
実用化イメージ

広い意味でのまちづくりにおいて、人の心理や行動を計測し、それを変える方法を提案するものです。そのため、マーケッティング分野や都市計画分野との連携が可能です。

研究者

大学院国際文化研究科 国際文化研究専攻 国際環境資源政策論講座

青木 俊明  

Toshiaki Aoki

筋萎縮性側索硬化症(ALS)に対する肝細胞増殖因子(HGF)を用いた治療法の開発

前の画像
次の画像
特徴・独自性
  • 筋萎縮性側索硬化症(ALS)は成人発症の神経変性疾患で、脳から脊髄に至る運動ニューロンの系統的変性脱落によって全身の筋力低下・筋萎縮をきたし、やがて呼吸不全に至る過酷な疾患である。ALSに対する治療法開発のため、東北大学神経内科では世界に先駆けてラットによるALSモデル動物の開発に成功した(Nagai M,et al. J Neurosci 2001)。このALSラットに対してヒト型遺伝子組換えHGF 蛋白の脊髄腔内持続投与を行ったところ、発症期からの投与開始でも運動ニューロンの脱落変性を抑制し、疾患進行を大幅に遅らせることに成功した。
実用化イメージ

大阪大学発のベンチャー企業であるクリングルファーマ社と共同でヒトに使用可能なGMP基準のヒト型リコンビナントHGF 蛋白による非臨床試験が終了し、東北大学病院臨床研究推進センターの協力の下で2011年7 月からフェーズI 試験が開始されている。さらにフェーズII 試験の準備を行っている。今後は大手製薬企業とも連携する予定である。

研究者

大学院医学系研究科 医科学専攻 神経・感覚器病態学講座(神経内科学分野)

青木 正志  

Masashi Aoki

遠位型ミオパチーに対する治療法の開発

概要

遠位型ミオパチーの一種であるGNEミオパチーは、体幹から離れた部位から筋肉が萎縮、変性し次第に体の自由が奪われていく希少疾病で、指定難病の一つである。本疾患患者ではGNEという酵素の遺伝子に変異がありアセノイラミン酸などシアル酸合成ができない。国立精神・神経医療研究センター疾病研究第一部においてモデルマウスを作製し、アセノイラミン酸の経口投与の予防効果が得られた。

従来技術との比較

2010~2011年に、世界で初めて医師主導治験として第Ⅰ相試験を実施し、安全性を確立した。医師主導第II/III相試験、延長試験、有効性確認試験を経て、2024年3月にノーベルファーマ社が商品名アセノベル®として製造販売承認を取得した。今後は本シーズで培ったレジストリやプロトコル作成のノウハウを活かして他のシアル酸補充やウイルスベクター、酸化的ストレスを標的とした治療開発が進むことが期待される。

特徴・独自性
  • ・2010~2011年に、世界で初めて医師主導治験として第Ⅰ相試験を実施し、安全性を確立した。医師主導第II/III相試験、延長試験、有効性確認試験を経た
  • ・2024年3月にノーベルファーマ社が商品名アセノベル®として製造販売承認を取得した。
  • ・ウルトラオーファンドラッグとして期待される。
実用化イメージ

今後は本シーズで培ったレジストリやプロトコル作成のノウハウを活かして他のシアル酸補充やウイルスベクター、酸化的ストレスを標的とした治療開発が進むことが期待される。

研究者

大学院医学系研究科 医科学専攻 神経・感覚器病態学講座(神経内科学分野)

青木 正志  

Masashi Aoki

new軸索病態に着目した筋萎縮性側索硬化症(ALS)の病態解明

前の画像
次の画像
概要

筋萎縮性側索硬化症(ALS)は運動ニューロン選択的に神経細胞死が起こる難病である。1mにおよぶ長い軸索は運動ニューロンの特徴であり、神経細胞死に先行する軸索形態・機能異常の修復はALS病態への早期治療介入という観点で重要である。

従来技術との比較

私たちは軸索形態異常の分子病態をALS患者由来のiPS細胞およびゲノム編集により変異箇所のみを修復したコントロール細胞等を比較し、高収量のRNA回収が可能なマイクロ流体デバイスを用いてRNAseq解析を行うことにより解析を進めてきた。さらにALSの原因遺伝子変異を導入したノックインマウスを作出し、運動ニューロン軸索遠位の神経筋接合部病態についても明らかにしてきている。

特徴・独自性
  • ・軸索形態異常の分子病態をALS患者由来のiPS細胞およびゲノム編集により変異箇所のみを修復したコントロール細胞を作出
  • ・高収量のRNA回収が可能なマイクロ流体デバイスを用いてRNAseq解析を行うことにより解析
  • ・ALSの原因遺伝子変異を導入したノックインマウスを作出し、運動ニューロン軸索遠位の神経筋接合部病態についても明らかにしてきている。
実用化イメージ

ALSの治療開発に貢献する

研究者

大学院医学系研究科 医科学専攻 神経・感覚器病態学講座(神経内科学分野)

青木 正志  

Masashi Aoki

高強度鋼の水素脆化

前の画像
次の画像
特徴・独自性
  • 高強度鋼の水素脆化特性について、水素が高強度鋼の機械的特性に及ぼす影響と腐食反応による環境からの水素侵入の両面から研究に取り組んでいます。主な研究内容は、各種高強度鋼の水素脆化による破壊の機構解明や、電気化学的手法を用いた種々の環境における腐食に伴う水素の侵入挙動の検討、鋼中の水素可視化手法、水素脆化特性評価法の提案などです。
実用化イメージ

高強度鋼材料の水素脆化特性とそれに及ぼす金属組織や水素トラップ物質の影響や、材料の特性や形状に応じた水素脆化評価法の提案、新規な水素可視化手法の開発など水素脆化分野での共同研究。

研究者

金属材料研究所 材料設計研究部 耐環境材料学研究部門

秋山 英二  

Eiji Akiyama

新規な有機強誘電体、有機半導体、有機磁性体の作製と物性評価

前の画像
次の画像
特徴・独自性
  • 有機分子の設計自由度に着目した分子集合体の多重機能の構築および無機材料とのハイブリッド化を試みている。導電性・磁性・強誘電性の観点から、分子性材料の電子−スピン構造を設計し、その集合状態を制御する事で、マルチファンクショナルな分子性材料の開発を行っている。単結晶・柔粘性結晶・液晶・ゲル・LB膜など多様な分子集合体を研究対象とし、無機クラスターや金属ナノ粒子とのハイブリッド化を試みている。本研究に関して興味のある企業へ学術指導を行う用意がある。
実用化イメージ

研究者

多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター ハイブリッド材料創製研究分野

芥川 智行  

Tomoyuki Akutagawa

超臨界水熱合成法による有機・無機ハイブリッドナノ粒子合成

前の画像
次の画像
特徴・独自性
  • 超臨界水を反応場とする有機修飾ナノ粒子の合成技術を発明した。超臨界反応場では有機分子と金属塩水溶液が均一状態で反応し、水分子が酸/塩基触媒として働き、有機修飾金属塩ナノ粒子を合成できる。このハイブリッドナノ粒子は有機分子を表面に有するため、溶剤に高濃度分散させてナノフルイッド、ナノインクとしたり、高分子とハイブリッド化させて有機・無機材料の機能を併せ持つ材料を創成することができる。
実用化イメージ

窒化ホウ素の有機修飾ナノ粒子はポリマーに分散させて、高熱伝導材料として使用できる。また酸化チタン、酸化ジルコニウムの有機修飾ナノ粒子は、ポリマーなどに高濃度分散させることにより高屈折率レンズ製造に応用できる。また、高活性ナノ触媒としての利用も期待される。現在、本技術に基づいて、超臨界ナノ材料技術開発コンソーシアム(参加企業およそ80 社)が設立されており、産業への応用や国家プロジェクトの提案などを積極的に推進している。

研究者

高等研究機構材料科学高等研究所 ソフトマテリアルグループ

阿尻 雅文  

Tadafumi Ajiri

超臨界水中での反応プロセス開発

前の画像
次の画像
特徴・独自性
  • 当研究室では、超臨界水を反応場とする流通型反応プロセスの開発を行っている。高温高圧反応場では、水の物性が大きく変化し、水と油とガスが均一相を形成する。この状態では、水分子そのものが酸や塩基触媒として機能し、高速に反応が生じる。このような新規な反応場の利用には、プロセス開発をすすめながら反応場の相平衡、流動、反応速度論の理解に基づく、プロセスの設計基盤の確立が必要である。
実用化イメージ

超臨界水中でのナノ粒子連続合成プロセス、超臨界水・亜臨界水中でのバイオマスの前処理・可溶化プロセス、超臨界水中での重質油の改質プロセスの開発を行っている。

研究者

高等研究機構材料科学高等研究所 ソフトマテリアルグループ

阿尻 雅文  

Tadafumi Ajiri

高分子とナノ粒子のハイブリッド

前の画像
次の画像
特徴・独自性
  • 高分子材料とナノ粒子とのハイブリッド材料は、2つの異なる材料の機能を合わせ持つ今までにない材料として期待され、多くの研究開発が進められている。しかし、材料間の親和性が低く、多くの場合ハイブリッド化により、両方の機能が低下することが多く、相反機能を同時に達成することは不可能とされてきた。
  • 当研究室では、高分子とナノ材料間の界面制御を最適に行う新たな超臨界技術により、相反する機能を合わせ持つ新たなハイブリッド材料の創製に成功した。
実用化イメージ

材料の例として
・ 透明、フレキシブル、高屈折率、易加工性
・ 高熱伝導度、フレキシブル、密着性、絶縁性、易加工性等
といったハイブリッド材料創製に向けた研究開発を行っている。

研究者

高等研究機構材料科学高等研究所 ソフトマテリアルグループ

阿尻 雅文  

Tadafumi Ajiri

超臨界法で合成された金属酸化物ナノ粒子を用いた炭化水素の低温改質反応

前の画像
次の画像
特徴・独自性
  • 超臨界水を反応場とする有機修飾ナノ粒子の合成技術を利用することで、サイズ、結晶面が制御された、様々な金属酸化物ナノ粒子の合成に成功している。低温域での酸素貯蔵/放出能力が非常に高く、有意な速度で酸化的炭化水素の改質反応が進行する。
実用化イメージ

バイオマス廃棄物・重質油やメタンの低温改質反応。将来的には廃棄物・プラスチックのCO2フリー完全リサイクルをはじめとした低炭素社会構築につながる技術として期待される。

研究者

高等研究機構材料科学高等研究所 ソフトマテリアルグループ

阿尻 雅文  

Tadafumi Ajiri

摩擦と摩耗の制御に立脚した高機能機械システムの創成

前の画像
次の画像
特徴・独自性
  • トライボロジー(摩擦と摩耗の制御)は、機械に対する普遍的要求である「高機能、高効率、高信頼性」の鍵を握る科学技術です。当研究室では、摩擦と摩耗制御の鍵として「なじみ」に着目し、摩擦により誘起される接触面での現象の体系的理解を基礎研究の柱に、さらに摩擦により高機能界面を継続的に自己形成させる技術を摩擦・摩耗制御技術と位置づけ、そのための材料・表面テクスチャの創成技術開発、表面エネルギー・摩擦化学反応の制御技術開発を行っています。
実用化イメージ

トライボロジーは、多面的な知識の融合が必要となる学際科学であり、モノづくりのための基盤技術です。様々な分野の技術者、研究者の皆様との深い連携は、摩擦と摩耗の制御に基づく高機能、高効率、高信頼性を有するモノづくりに不可欠です。産学連携の研究開発を希望する所以です。

研究者

大学院工学研究科 機械機能創成専攻 機能システム学講座(ナノ界面制御工学分野)

足立 幸志  

Koshi Adachi

輸送体制御テクノロジーによる生物物質生産(発酵)

前の画像
次の画像
特徴・独自性
  • 微生物による大規模物質生産(発酵)には、化成品・食品に該当する有機酸・アミノ酸、抗生物質などの代謝産物生産がある。大型発酵タンク( 数百トン) を用いて生産されるものも多く、単品で年産100万トンを越える物質も多数ある。発酵では目的物質生産のために極端な代謝制御を行う。従来の発酵産業は細胞内代謝の機能改変・強化により成功を収めたがその手法も限界に達している。即ち基質取り込み・産物排出が律速となり生産性の向上が見込めない。我々は基質取り込み・産物排出機能の強化・改変による生産性の向上を目指し、輸送体を制御して物質生産を行う技術の開発を行っている。方策の一つとして、輸送・排出過程でエネルギーを消費せずにエネルギーを生産しつつ物質生産を高速且つ高効率に行う輸送体とその共役謝系を見出し、産業応用開発を行っている。
実用化イメージ

研究者

大学院農学研究科 農芸化学専攻 発酵微生物学寄附講座

阿部 敬悦  

Keietsu Abe

麹菌を用いた生分解性プラスチックの分解リサイクル

前の画像
次の画像
特徴・独自性
  • カビの一種で醸造・醗酵に用いられる麹菌Aspergillus oryzaeの固体表面への生育能と、大規模な麹菌工業培養設備(100万トン/年)に着目し、麹菌による生分解性プラスチック(生プラ)の高速・高効率分解と、原料モノマー回収が可能なリサイクル技術の開発を行っている。我々は、麹菌が生プラ固体表面に生育する際に界面活性蛋白質群を大量分泌し、界面蛋白質群が固体表面に吸着した後に生プラ分解酵素を特異的に吸着し固体表面に分解酵素を濃縮することで分解を促進する新規分解促進機構を見出した。また麹菌の産生する界面活性蛋白質は、免疫応答しないことから、医療用ナノ粒子の被覆材として利用可能である。
実用化イメージ

大型発酵設備に適用した工業技術の開発、及び界面活性蛋白質群・酵素等の化成品( 医療用ナノ粒子素材等) への応用開発を展開している。

研究者

大学院農学研究科 農芸化学専攻 発酵微生物学寄附講座

阿部 敬悦  

Keietsu Abe

微生物ゲノム情報を用いた抗菌剤創造薬システム

前の画像
次の画像
特徴・独自性
  • 農業・医療分野の動植物感染菌対策に必要な抗菌剤の開発においては、効率的創薬手法の確立が求められており、我々は微生物ゲノム科学を活用して連続的に新規抗菌剤を創出する新技術体系を確立した。新規創薬パイプラインでは、様々な基準抗真菌剤に対する糸状菌の網羅的な転写応答プロファイル解析から、創薬標的候補遺伝子の機能解析と候補化合物の系統的分別探索に有効な、1)細胞システム毎(エネルギー系、細胞膜生合成系、細胞壁系、細胞骨格系等、シグナル伝達系)のレポーターアッセイ系、2)化合物転写応答-表現型データベースによる統計解析を組み合わせた新剤評価系を構築して産業運用している。現在、化合物探索の共同開発が可能な状態にある。
実用化イメージ

研究者

大学院農学研究科 農芸化学専攻 発酵微生物学寄附講座

阿部 敬悦  

Keietsu Abe

細胞内在の転写因子活性の定量評価

前の画像
次の画像
特徴・独自性
  • 遺伝子発現プロファイルを計測する手法は多様にあるが、遺伝子の発現を制御する転写因子の活性を定量評価する技術は不足している。我々は生体組織内細胞や培養細胞が発現する複数の内在転写因子の転写活性を直接定量評価する技術を開発した。本技術を用いることにより病態や生理活動に関連して生体組織内細胞の状態がどのように変化するのか解析することができる。転写因子活性を指標にした慢性疾患の病理解明、転写因子活性をモニターすることによる医薬品の開発や薬品の効能、副作用のスクリーニングなどに有用であると考えられる。
実用化イメージ

研究者

大学院生命科学研究科 脳生命統御科学専攻 神経ネットワーク講座(脳機能発達分野)

安部 健太郎  

Kentaro Abe

「形」と「振る舞い」の美しさ

前の画像
次の画像
概要

一言で言うと,「化粧心理学」と「災害心理学」をテーマとして研究しています。

従来技術との比較

「化粧心理学」については,現在の隆盛に至る牽引者であるという自負があります。
「災害心理学」については,穏やかな被災生活の維持に注目した,被災者のマナーという,独自の視点が特徴です。

特徴・独自性
  • 感情の観点から、「形」と「振る舞い」の美しさについて研究しています。形のほうは、主に化粧の心理・文化的研究です。たとえば、スキンケアのリラクセーション効果の生理心理学的研究、アイシャドーで目を大きく見せるテクニックの知覚心理学的研究、フレグランスのアロマコロジー効果の研究などです。「振る舞い」のほうは、冷静に秩序を保った東日本大震災の被災者の心理、災害時に立ち上がる創発規範などを研究しています。
実用化イメージ

化粧品メーカーや、ゴミの不法投棄問題を扱う公的機関等との共同研究実績があります。心理・文化的価値を商品に込める、あるいは社会生活に潤いと美しさをもたらすような共同研究を歓迎します。

研究者

大学院文学研究科 総合人間学専攻 心理言語人間学講座(心理学専攻分野)

阿部 恒之  

Tsuneyuki Abe

生物模倣材料・デバイスの開発

前の画像
次の画像
特徴・独自性
  • 生物の優れた機能を学び、材料・デバイスの創成に取り入れることで、生物を超える機能を示す機能を創出する『生物模倣工学』を目指しています。例えば、ムール貝に学んだ表面処理・接着剤の開発、ウツボカズラに学んだ抗生物付着基板の開発、ヘモグロビンに学んだ高活性燃料電池(水素・酵素・微生物等)の非白金触媒設計、生物の針に学んだ針型バイオセンサーなど多岐にわたります。
実用化イメージ

電気化学、高分子化学を基盤に金属空気電池・燃料電池・表面処理・接着・バイオセンサー等を含むエネルギー・バイオ・電気電子領域に関する技術・知見を提供します。

研究者

高等研究機構学際科学フロンティア研究所 新領域創成研究部 デバイス・テクノロジー研究領域

阿部 博弥  

Hiroya Abe