行のキーワード 512ワード

抗ウイルス剤

生物活性の探索をアウトソーシングしませんか - ウイルス・腫瘍・細菌を中心に -

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 当研究室では様々な生物活性探索アッセイ方法を確立しています。その成果として日本たばこ産業と共同開発した抗HIV 剤、エルビテグラビルが臨床応用されています。他にも、新規の作用機序を有する逆転写酵素阻害剤(EFdA) や抗ガン剤(S-FMAU)を開発してきました。具体的には、1)抗ウイルス剤・抗菌剤などの活性評価、2)抗腫瘍活性の測定、3)新たなスクリーニング法の確立などを行います。
実用化イメージ

新たなターゲットに対するhigh through-put screening 確立の受託も可能ですので個別にご相談ください。P3実験施設を必要とする共同開発や他の微生物を含めた学術指導にも応じます。

研究者

災害科学国際研究所 災害医学研究部門 災害感染症学分野 医学研究科・医学部・大学病院・東北メディカル・メガバンク機構(兼務)

児玉 栄一  

Eiichi Kodama

抗うつ

男性の更年期障害を改善する食品成分

前の画像
次の画像
特徴・独自性
  • 近年、加齢や過度のストレスによる加齢男性性腺機能低下(LOH)症候群が注目されています。LOH 症候群は男性ホルモンの合成量が減少することで発症し、筋肉機能、性機能の低下だけでなく鬱などの精神的症状も招きます。
  • 食品成分による男性ホルモン増強作用をスクリーニングする系を精巣由来細胞を用いて確立し、ビタミン、サプリメント、食経験のある植物抽出物などが増強活性を持つことを明らかにしました。
実用化イメージ

上記の成分や新たに選抜した成分を高含有する食品にLOH症候群の予防・改善効果が期待され、「中高年にやる気を与える食品」の開発に繋げられれます。

研究者

大学院農学研究科 農芸化学専攻 食品天然物化学講座(栄養学分野)

白川 仁  

SHIRAKAWA Hitoshi

高温

各種環境に対応した大深度地殻応力計測技術

特徴・独自性
  • CO2の地中貯留、深海底面下にあるメタンハイドレート層からのメタンガス生産、地熱エネルギー抽出などのフロンティア地殻工学、さらには、原子力発電所の耐震設計等への応用を目的として、対象地層に作用する地殻応力を孔井を使って定量的に評価するための方法を開発している。これによれば、地表面ないし海表面からキロメートル級の深度、高温環境さらには固結のみならず未固結岩体への適用が可能である。特にBABHYと名付けた方式については、800 mという実用深度での適用実験に成功した。また、この業績に対して、国内岩の力学連合会論文賞、米国岩石力学協会論文賞などを受賞した。これらの技術を産業界で活用したい企業や団体との共同研究を希望する。
実用化イメージ

研究者

流体科学研究所 附属統合流動科学国際研究教育センター 地殻環境エネルギー研究分野

伊藤 高敏  

Takatoshi Ito

高温酸化

自己治癒セラミックスの開発および固相変態型蓄熱材料の開発

前の画像
次の画像
特徴・独自性
  • 自己治癒セラミックスの研究を行っています。自己治癒は材料表面の傷を自発的に修復する機能で、強度信頼性の向上に寄与します。主に900-1300℃程度で使用可能な自己治癒セラミックスを開発しており、現在は400℃程度で使用可能な材料開発を進めています。
  • 上記とは別に、700℃程度で鉄系材料の固相変態を利用した蓄熱材料を開発しています。蓄熱後も固相であるため、機械的強度が必要な場所で応用が期待できます。
実用化イメージ

自己治癒材料:金属材料の代替により軽量化が期待できます。(自動車のブレーキロータやジェットエンジンタービン翼等)
蓄熱材料:鉄鋼排熱を利用した木炭製造プロセス等

研究者

大学院環境科学研究科 先端環境創成学専攻 太陽地球システム・エネルギー学講座(資源利用プロセス学分野)

丸岡 大佑  

Daisuke Maruoka

高温障害

イネ科作物の高温・低温障害の克服法

前の画像
次の画像
特徴・独自性
  • 地球規模での温暖化は、コムギやオオムギなどの収量に多大な影響を及ぼしている。また、異常気象は局所的な低温ももたらし、東北地方でのイネの冷害は有名である。これら主要作物の温度障害は、いずれも花粉形成の過程が最も脆弱であり、ストレスにより正常花粉ができなくなる。本技術は、植物ホルモンのオーキシンやジベレリン、さらにはカーボンソースを適切な時期に散布することで、これら障害を完全に克服するものである。
実用化イメージ

適切な植物ホルモン等を利用することで異常気象による作物の収量低下を防ぐことができ、農作物の安定的な生産に資する。

研究者

大学院生命科学研究科 分子化学生物学専攻 分子ネットワーク講座(分子遺伝生理分野)

東谷 篤志  

Atsushi Higashitani

高温超伝導体

高温超伝導テープおよびケーブルの着脱可能な接合法の研究

前の画像
次の画像
特徴・独自性
  • 当研究室では高温超伝導テープおよび導体の着脱可能な接合法の研究を行っている。接合方法としては機械的バットジョイント、および機械的ラップジョイント(図1)を採用している。これら機械的接合法では、接合部に与える圧縮力を解除することで、着脱が可能となる。高温超伝導体は比較的高温(液体窒素温度域)で使用することで、比熱を大きくでき、ある程度の抵抗発熱を許容できる。局所的な高熱流束によるクエンチ防止には、金属多孔質体を用いた極低温冷媒の熱伝達促進技術(図2)を用いる。
  • 本研究はこれまで想定されてこなかった高性能で短尺の高温超伝導線を利用した組立・分解・補修が可能な各種超伝導機器の開発可能性を新たに示すものであると考えている。すなわち、アプリケーション開発側から材料開発へのアプローチを可能とし、高温超伝導体産業の活性化を促せる研究であり、この技術を産業界で活用したい企業や団体との共同研究を希望する。
実用化イメージ

研究者

大学院工学研究科 量子エネルギー工学専攻 エネルギー物理工学講座(核融合・電磁工学分野)

橋爪 秀利  

Hidetoshi Hashizume

高温物理化学

エコマテリアルプロセス

前の画像
次の画像
特徴・独自性
  • 溶融鉄合金・スラグの熱力学的性質、反応速度論、複合酸化物の相平衡など、鉄鋼を中心とした金属製造プロセスに関する物理化学的基礎研究、金属スクラップや廃棄物リサイクルの熱力学、スラグを利用した炭酸ガス固定化等、環境関連の研究を行っている。最近では、従来行ってきた素材製造プロセス工学に基礎を置く研究手法に、計量経済学、LCA、物質フロー分析などを融合させ、他に類を見ない独特の環境研究を展開している。
実用化イメージ

高炉、電炉鉄鋼メーカーとは従来より強く連携して研究を進めてきたが、スラグ等製錬副生物の高度資源化のために、非鉄メーカー、廃棄物中間処理事業者、行政とも連携していきたい。

研究者

未来科学技術共同研究センター 開発企画部

長坂 徹也  

Tetsuya Nagasaka

高温融体物性

高温反応場を用いた機能材料の創製と熱物性計測法の開発

前の画像
次の画像
特徴・独自性
  • 金属・無機系材料の創製と高温融体の熱物性計測に取り組んでいます。現在、環境、医療、バイオ、情報分野での幅広い応用が期待されている窒化物半導体について独自の発想に基づいた新たな結晶成長プロセスの開発を行っています。また、当研究室で開発した超高温熱物性計測システムを一般開放し、材料開発の数値シミュレーションに必要な比熱、熱伝導率や表面張力など種々の熱物性測定のニーズに応えています。
実用化イメージ

鉄鋼・金属系素材、半導体産業:結晶成長、溶接、鋳造、凝固などのプロセス開発
 航空宇宙産業:ロケット・航空機用エンジンおよび構成部材の評価
 エネルギー産業:原子炉・核融合炉用材料、発電タービン用材料の評価

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 高温材料物理化学研究分野

福山 博之  

Hiroyuki Fukuyama

高温超伝導ケーブル

高温超伝導テープおよびケーブルの着脱可能な接合法の研究

前の画像
次の画像
特徴・独自性
  • 当研究室では高温超伝導テープおよび導体の着脱可能な接合法の研究を行っている。接合方法としては機械的バットジョイント、および機械的ラップジョイント(図1)を採用している。これら機械的接合法では、接合部に与える圧縮力を解除することで、着脱が可能となる。高温超伝導体は比較的高温(液体窒素温度域)で使用することで、比熱を大きくでき、ある程度の抵抗発熱を許容できる。局所的な高熱流束によるクエンチ防止には、金属多孔質体を用いた極低温冷媒の熱伝達促進技術(図2)を用いる。
  • 本研究はこれまで想定されてこなかった高性能で短尺の高温超伝導線を利用した組立・分解・補修が可能な各種超伝導機器の開発可能性を新たに示すものであると考えている。すなわち、アプリケーション開発側から材料開発へのアプローチを可能とし、高温超伝導体産業の活性化を促せる研究であり、この技術を産業界で活用したい企業や団体との共同研究を希望する。
実用化イメージ

研究者

大学院工学研究科 量子エネルギー工学専攻 エネルギー物理工学講座(核融合・電磁工学分野)

橋爪 秀利  

Hidetoshi Hashizume

光学活性化合物

有機分子触媒を用いた高度分子変換

前の画像
次の画像
特徴・独自性
  • 有機化合物の選択的かつ効率的な分子変換を、環境に対する負荷を軽減しつつ実現するための技術として、触媒として機能する有機分子の設計開発を行っている。ブレンステッド酸ならびに塩基は有機合成に汎用される触媒だが、その機能化を目的として、キラルブレンステッド酸触媒として軸不斉リン酸を、キラル塩基触媒として軸不斉グアニジン塩基をそれぞれ設計開発している。これらを用いることで高選択的に光学活性化合物を得る反応開発に多くの実績を有している。
実用化イメージ

回収し再利用が可能な有機分子触媒として、キラルブレンステッド酸ならびに塩基を開発しており、これらを用いた高立体選択的な分子変換法を確立している。創薬のプロセス化学に適用することで廃棄物を削減し、選択的かつ効率的な分子変換に基づく医薬品合成について学術指導ならびに共同研究を行う用意がある。

研究者

大学院理学研究科 化学専攻 境界領域化学講座(反応有機化学研究室)

寺田 眞浩  

Masahiro Terada

光学素子

試作コインランドリ −MEMSを中心とする半導体試作共用設備−

前の画像
次の画像
前の動画
次の動画
概要

4 インチ、6インチ、一部8インチのMEMSを中心とした半導体試作開発のための共用設備で、必要な装置を必要なときに時間単位でお使いいただけます。東北大学に蓄積された関連ノウハウが利用可能で、スタッフが試作を最大限支援します。東北大学西澤潤一記念研究センターの2 階スーパークリーンルームのうち、約1,200m2を主に利用しています。装置、料金については、ホームページをご覧ください。

従来技術との比較

経験豊富な10人以上の技術スタッフが支援します。エッチング、成膜などの各プロセスの標準的な加工条件を提供していますので、ご要望に応じた試作がすぐに開始できます。シリコン以外の様々な材料にも対応します。

特徴・独自性
  • MEMS、光学素子、高周波部品などのデバイスのほか、半導体材料開発などに対応します。
  • 試作前、試作途中における、デバイスやプロセスの技術相談にも対応しています。
  • デバイスの実装工程に対応する「プロトタイプラボ」も利用できます。
  • 半導体、計測器、センサなどの歴史を学んでいただける博物館もご覧いただけます。
  • 東北大学半導体テクノロジー共創体の一部として、半導体の研究開発、人材育成を推進しています。
  • 学生、企業技術者向けの半導体人材育成プログラムをオンデマンドで実施しています。
  • 文部科学省マテリアル先端リサーチインフラ(ARIM)事業のメンバーとして、設備とデータの共用に取り組んでいます。
実用化イメージ

2010年の開始以降310社以上の企業が利用しています。MEMS等のデバイスメーカーはもちろん、材料や機械部品、装置メーカーからも利用があります。これまでに約10件の実用化支援事例があります。

研究者

マイクロシステム融合研究開発センター

戸津 健太郎  

Kentaro Totsu

光学薄膜

情報の発信・受信やエネルギー供給を豊かにする機能性セラミックス材料の開発

前の画像
次の画像
特徴・独自性
  • 反射防止薄膜、電池、電源、メモリなどの高性能化・高耐久化、ひいては、豊かな情報の発信・受信や持続的なエネルギー供給に寄与する機能性セラミックスを新奇開発しています。電子論と熱力学を中心に据えたマテリアルデザインにより、透明導電体の対偶的な材料である黒色絶縁体や、3秒で焼結可能なスラリーを開発してきました。独自に構築したイオンビーム支援パルスレーザー堆積装置で酸窒化物や酸水素化物も合成しています。
実用化イメージ

研究成果のアウトプット先の一例に、光学的機能膜 (反射防止膜、透明電極、太陽電池など)、二次電池、固体酸化物型燃料電池、メモリ関係 (抵抗変化、相変化)、などがあります。

研究者

大学院工学研究科 知能デバイス材料学専攻 情報デバイス材料学講座(エネルギー情報材料学分野)

石井 暁大  

Akihiro Ishii

抗がん剤

リンパ節内投与法の開発

前の画像
次の画像
特徴・独自性
  • 1.1個の転移リンパ節の治療に必要な抗がん剤の量は全身投与量の1/1,000から1/10,000.
  • 2. 副作用はほぼ無視できる.
  • 3. 超音波ガイド下でリンパ節内に薬剤投与が可能
  • 4. 投与薬剤の溶媒に関して, 国際特許出願済み
実用化イメージ

1. 頭頸部がん, 乳がんなどにおける所属リンパ節の治療と予防的治療
2. ドラッグリポジショニング・ジェネリックによる医薬品開発を目指す製薬企業
3. 投与システムの開発を目指す医療機器メーカー

研究者

大学院医工学研究科 医工学専攻 治療医工学講座(腫瘍医工学分野)

小玉 哲也  

Tetsuya KODAMA

抗癌剤

大腸がんにおけるABC トランスポーターの発現制御

前の画像
次の画像
特徴・独自性
  • 大腸がんは、わが国のがん死亡原因の上位に位置し、手術療法以外には根治的治療法がない。がん部の特徴を探索するために、私たちは大腸がん部と非がん部の転写産物を網羅的に解析している。例えば抗癌剤の有効性決定因子の一つであるABC トランスポーターの発現に注目したところ、ABC トランスポーターの一つであるABCC3は大腸がん発がんに関わるWnt シグナルによって抑制されることを見出した。
実用化イメージ

臨床検体から容易にトランスクリプトームをはじめとする網羅的解析を行うことができるようになった。これらの結果は、創薬標的発見の一助となることが期待され、製薬業界でこの知見の展開を希望している。

研究者

大学院医学系研究科 創生応用医学研究センター 細胞増殖制御分野

中山 啓子  

Keiko Nakayama

高含水比泥土

繊維質物質を用いた高含水比泥土再資源化技術の開発

前の画像
次の画像
特徴・独自性
  • 建設汚泥やヘドロなどの泥土は、含水比が高いため直接利用が困難であり、リサイクル率が低いのが現状である。そこで、本研究室では軟弱泥土に古紙破砕物とセメント系固化材を混合し、良質な土砂に再資源化する繊維質固化処理土工法(ボンテラン工法)を開発している。本工法の最大の特徴は、泥土の再資源化の過程で古紙と泥土を混合する点であり、土砂内部に含まれる繊維質物質が様々な優れた地盤工学的特徴を生み出している。
実用化イメージ

本工法により生成される土砂は、破壊強度および破壊ひずみが大きい、乾湿に対する耐久性が高い、動的強度が高く液状化し難いといった特徴を有するため、堤防の補強盛土など様々な土構造物の構築に使用可能である。

研究者

大学院環境科学研究科 先進社会環境学専攻 資源戦略学講座(地球開発環境学分野)

高橋 弘  

Hiroshi Takahashi

高強度鋼

高強度鋼の水素脆化

前の画像
次の画像
特徴・独自性
  • 高強度鋼の水素脆化特性について、水素が高強度鋼の機械的特性に及ぼす影響と腐食反応による環境からの水素侵入の両面から研究に取り組んでいます。主な研究内容は、各種高強度鋼の水素脆化による破壊の機構解明や、電気化学的手法を用いた種々の環境における腐食に伴う水素の侵入挙動の検討、鋼中の水素可視化手法、水素脆化特性評価法の提案などです。
実用化イメージ

高強度鋼材料の水素脆化特性とそれに及ぼす金属組織や水素トラップ物質の影響や、材料の特性や形状に応じた水素脆化評価法の提案、新規な水素可視化手法の開発など水素脆化分野での共同研究。

研究者

金属材料研究所 材料設計研究部 耐環境材料学研究部門

秋山 英二  

Eiji Akiyama

合金

高加工性を有する新型銅系形状記憶合金

前の画像
次の画像
特徴・独自性
  • 実用形状記憶合金ニチノールと同等の形状記憶および超弾性特性を有し、約2倍の加工性を持つCu-Al-Mn系形状記憶合金を開発しました。この合金はニチノールの数分の1のコストで作製することができ、形状記憶処理に金型が不要なため、線以外の複雑な形状への加工・成形が可能です。最近、この合金を利用して着脱容易な「巻き爪矯正具」を開発・製品化し、2011 年から販売を始めました。
実用化イメージ

直径や厚さが0.1 〜 20mm もの線、棒、板材でも6%以上の優れた超弾性が得られる技術を確立し、現在制震部材への応用研究を進めています。医療、建築にかかわらず本合金の特性を利用したい用途があったら是非ご連絡下さい。

研究者

大学院工学研究科 金属フロンティア工学専攻 創形創質プロセス学講座(材料組織制御学分野)

貝沼 亮介  

Ryosuke Kainuma

析出強化型Co基超耐熱合金

前の画像
次の画像
特徴・独自性
  • これまで、Co基合金は高温材料として利用できる金属間化合物γ’相が存在しないため、高温強度がNi 基合金に比べて低い問題がありました。我々は、新しい金属間化合物相Co3(Al、W) γ’相を発見し、γ/γ’型Co-Al-W 基鋳造及び鍛造合金で優れた高温強度が得られています。1100℃以上の超高温用としてはIr-Al-W 合金があります。また、Co 基合金は耐摩耗性に優れる特徴を有しています。例えば、摩擦攪拌接合(FSW)ツールとして優れた特性を示し、従来、FSWが困難であった鉄鋼材料やチタン合金などの接合に対しても高いパフォーマンスを確認しています。各種、高温部材、耐摩耗部材、FSW への適用に向けた共同研究を希望します。
実用化イメージ

研究者

大学院工学研究科 金属フロンティア工学専攻 創形創質プロセス学講座(計算材料構成学分野)

大森 俊洋  

Toshihiro Omori

卑金属・半金属およびその合金によるオープンセル型ナノポーラス材料の開発

前の画像
次の画像
特徴・独自性
  • ナノポーラス金属は、緻密材に比べて桁違いに大きい表面積を有し、次世代高機能材料として応用が期待されている。その主な作製法として知られる水溶液による脱成分法は、微細・均一な多孔質構造の形成を可能にするが、その形成原理は腐食であり、標準電極電位の高い貴金属において多孔質材料の作製が可能であるが、卑金属では酸化されてしまう。本部門では金属溶湯による簡便な脱成分技術を新たに考案した。この技術によれば、貴・卑に依存せず純金属や合金を多孔質化することが可能で、かつ、無酸素脱成分工程であるために酸化も生じない。従って、これまで作製が困難であった数々の卑金属(Ti、 Ni、 Cr、 Mo、 Fe、Co 等)・半金属元素およびそれらの合金において、オープンセル型ナノポーラス金属材料の開発に成功した。
実用化イメージ

新規電極、触媒、フィルター等に実用が期待できるほか、Niなどの毒性元素を含有する生体金属材料表面からこれを除去する技術としても利用でき、関連企業・団体との共同研究・開発を強く希望する。

研究者

金属材料研究所 物質創製研究部 非平衡物質工学研究部門

加藤 秀実  

Hidemi Kato

構造相転移・相変態組織形成学・エネルギー材料

前の画像
次の画像
特徴・独自性
  • 構造相転移・相変態組織形成学を基軸にし、材料組織構造を制御することにより新機能を発現する材料を研究開発することを目指します。基盤材料のみならず、革新電池用エネルギー材料の開発にも重点をおきます。
実用化イメージ

蓄電池に関わる事業などは共同研究可能です。

研究者

金属材料研究所 物質創製研究部 構造制御機能材料学研究部門

市坪 哲  

Tetsu Ichitsubo