行のキーワード 512ワード

膠原病

重度の自己免疫性関節炎、血管炎、唾液腺炎を自然発症する疾患モデルマウス、McH-lpr/lpr-RA1マウスの開発

前の画像
次の画像
特徴・独自性
  • McH/lpr-RA1マウスは、MRL/lprとC3H/lprマウスに由来するリコンビナントコンジェニックマウスで、関節リウマチ、結節性多発動脈炎、シェーグレン症候群に類似した骨破壊や関節強直、血管炎、唾液腺炎を高頻度に発症します。一方McH/lpr-RA1は、MRL/lprにみられるような全身のリンパ節腫脹や重篤な腎炎の発症はみられませんので、繁殖・維持が容易で長期の薬剤投与実験も可能です。
実用化イメージ

膠原病の診断・治療薬の開発。免疫チェックポイント阻害剤による免疫学的有害事象の発症メカニズムの解明と発症予防薬の開発等に応用可能で、製薬会社、検査試薬会社等との産学連携が可能である。

研究者

大学院医工学研究科 医工学専攻 治療医工学講座(腫瘍医工学分野)

小玉 哲也  

Tetsuya KODAMA

咬合

CAD/CAM応用に向けた歯列形態と咬合関係の高精度計測

前の画像
次の画像
特徴・独自性
  • CAD/CAMによる歯科補綴装置の調製が実現されて久しいが、寸法精度は無調整で口腔に装着可能な程度に遠く及ばない。印象採得時の開口により顎骨や歯列が変形し、咬合関係に関するCADデータの精度が低下するためである。本技術は咬頭嵌合位のチェックバイト形状を用いて個々の歯冠形態を再配置し、咬合時の歯列形態や咬合状態を再現するもので、補綴装置が無調整で装着できる精度(0.04mm)を実現した。
実用化イメージ

本法独自のチェックバイト法を現行の精密印象法もしくは光学印象法と併用するもので、種々の商用CADシステムに容易に応用可能である。高精度商用システム開発に向け、歯科関連企業との連携を希望する。

研究者

大学院歯学研究科 歯科学専攻 リハビリテーション歯学講座(加齢歯科学分野)

服部 佳功  

Yoshinori Hattori

鋼構造

咬合の精度

CAD/CAM応用に向けた歯列形態と咬合関係の高精度計測

前の画像
次の画像
特徴・独自性
  • CAD/CAMによる歯科補綴装置の調製が実現されて久しいが、寸法精度は無調整で口腔に装着可能な程度に遠く及ばない。印象採得時の開口により顎骨や歯列が変形し、咬合関係に関するCADデータの精度が低下するためである。本技術は咬頭嵌合位のチェックバイト形状を用いて個々の歯冠形態を再配置し、咬合時の歯列形態や咬合状態を再現するもので、補綴装置が無調整で装着できる精度(0.04mm)を実現した。
実用化イメージ

本法独自のチェックバイト法を現行の精密印象法もしくは光学印象法と併用するもので、種々の商用CADシステムに容易に応用可能である。高精度商用システム開発に向け、歯科関連企業との連携を希望する。

研究者

大学院歯学研究科 歯科学専攻 リハビリテーション歯学講座(加齢歯科学分野)

服部 佳功  

Yoshinori Hattori

高効率太陽電池

環境に優しい窒化物半導体から構成される高効率太陽電池

概要

結晶極性を利用した高効率太陽電池
https://www.t-technoarch.co.jp/data/anken/T12-157.pdf
結晶の極性(薄膜結晶成長方向に沿った構成原子の配列順)を制御した成長技術、特に窒素(N)極性成長技術を用いたN極性太陽電池であり、Ga極性太陽電池と比較して、フォトキャリの引き出し効率が8倍以上大きくなることを実験検証済である。

従来技術との比較

光吸収電流に関しては、N極性型窒化物半導体太陽電池は、従来のGa極性窒化物半導体太陽電池に比べて、8倍程大きい。

特徴・独自性
  • 従来の窒化物半導体素子の結晶極性は、太陽電池も含めて、すべてGa極性であった。本発明の窒化物半導体太陽電池はN極性である。
  • 結晶極性にN極を用いることによって、光吸収電流は8倍大きくなる。その結果、高効率の太陽電池を窒化物半導体を用いて作製できる。
実用化イメージ

窒化物半導体の温度に依存しにくい特性を活かし、温度変化の激しい環境においても安定して動作する太陽電池の研究開発を進めたい。
企業とは、素子構造の最適化やN極性太陽電池の特性定量的化を共に行いたい。

研究者

未来科学技術共同研究センター 開発研究部 窒化物半導体の結晶成長と光デバイス・電子デバイスの研究

松岡 隆志  

Takashi Matsuoka

抗酸化

脂質の酸化原因を明らかにできる新たな手法を開発

前の画像
次の画像
特徴・独自性
  • 私たちの身体を構成する脂質が何らかの原因で酸化され、過酸化脂質が生じると、病気の要因になると考えられています。 故に、どのような酸化反応( 炎症やラジカル酸化) が進んでいるのかを知ることは重要で、私たちは過酸化脂質の構造を質量分析で詳細に解析することで、酸化反応の種類の見極めを達成しました。 つまり、その種類に応じた適切な抗酸化物質を選択すれば、効果的に酸化を抑制できると期待されます。
実用化イメージ

現在、病気予防を目的に、様々な抗酸化食品が出ていますが、私たちの方法を活用することにより、作用メカニズムが明確な確固たる抗酸化食品の創成に繋がると期待されます。

研究者

大学院農学研究科 農芸化学専攻 食品天然物化学講座(食品機能分析学分野)

仲川 清隆  

Kiyotaka Nakagawa

麴菌

麹菌を用いた生分解性プラスチックの分解リサイクル

前の画像
次の画像
特徴・独自性
  • カビの一種で醸造・醗酵に用いられる麹菌Aspergillus oryzaeの固体表面への生育能と、大規模な麹菌工業培養設備(100万トン/年)に着目し、麹菌による生分解性プラスチック(生プラ)の高速・高効率分解と、原料モノマー回収が可能なリサイクル技術の開発を行っている。我々は、麹菌が生プラ固体表面に生育する際に界面活性蛋白質群を大量分泌し、界面蛋白質群が固体表面に吸着した後に生プラ分解酵素を特異的に吸着し固体表面に分解酵素を濃縮することで分解を促進する新規分解促進機構を見出した。また麹菌の産生する界面活性蛋白質は、免疫応答しないことから、医療用ナノ粒子の被覆材として利用可能である。
実用化イメージ

大型発酵設備に適用した工業技術の開発、及び界面活性蛋白質群・酵素等の化成品( 医療用ナノ粒子素材等) への応用開発を展開している。

研究者

大学院農学研究科 農芸化学専攻 生物化学講座(応用微生物学分野)

阿部 敬悦  

Keietsu Abe

麹菌

麹菌や酵母を宿主とした有用タンパク質生産システムの開発

前の画像
次の画像
特徴・独自性
  • 麹菌や酵母は安全性が高く高等動植物由来の有用タンパク質の生産宿主として期待されている。麹菌はタンパク質分泌能が高く有望な宿主であるが、自身が生産するプロテアーゼにより目的のタンパク質が分解されてしまうため、プロテアーゼ生産に関わる転写因子遺伝子の破壊株を作製し、異種タンパク質の分解を抑えることに成功した。また、異種遺伝子のコドン使用頻度を麹菌に最適化することで転写産物の安定性を飛躍的に高めることができ、目的とするタンパク質の生産性向上を可能にした。これらを組み合わせることによって有用タンパク質の生産量のさらなる増加が可能になるものと期待される。
実用化イメージ

麹菌や酵母を宿主とした医薬品用タンパク質製造や産業用酵素生産への応用が期待でき、それらの製造生産に関わる企業との産学連携の可能性がある。

研究者

大学院農学研究科 農芸化学専攻 発酵微生物学寄附講座

五味 勝也  

Katsuya Gomi

格子欠陥

ウィークビーム走査透過電子顕微鏡による原子力材料中の微細組織の定量解析

概要

格子欠陥定量解析法として極めて高い計測精度を誇るウィークビーム走査透過電子顕微鏡(WB-STEM)法の中で放射化試料・核燃試料の微細組織(転位および照射欠陥集合体など)を定量解析する技術を開発しました。
カートリッジ式の加熱炉の温度計測と電流制御を完全自動化した専用の加熱試料ホルダーとの組み合わせで、高い信頼性の温度履歴と一緒に転位組織の変化を動的にその場計測できます。

従来技術との比較

従来TEM法では逆空間や転位論などの専門知識を必要としましたが、我々のWB-STEM法では膜厚計測や転位ループ特徴抽出など自動解析ソフトウェアを実装しており、簡便かつ高精度な照射欠陥分析ができます。

特徴・独自性
  • WB-STEM法は、その設計当初から原子力材料を取り扱う放射線管理区域内での、実装とオンサイト修理を想定して特殊孔径絞りや回折ディスク選択装置、制御・解析ソフトウェアを開発しています。
  • 欧州炉RPV監視試験片、米国研究炉中性子照射材など世界中の放射化試料の照射欠陥分析を受け入れています。
  • 廃炉事業に鉄含有核燃料模擬デブリの性状分析にも活用されています。
実用化イメージ

現在、透過電子顕微鏡を用いて組織観察を実施している研究組織が新たに特殊改造によってWB-STEM法を導入することをサポートをします。透過電子顕微鏡の使用実績の無い研究者に転位分析の手順を指導します。

研究者

金属材料研究所 附属量子エネルギー材料科学国際研究センター 研究部

吉田 健太  

Kenta Yoshida

高次元ダイナミクス

ブレインモルフィックコンピューティングハードウェア

前の画像
次の画像
特徴・独自性
  • 脳が特異的に持つ機能(例えば、意識/無意識過程、自己、選択的注意など)を、これまでの情報科学的な方法とは異なり、デバイスの物理的な特性・ダイナミクスを用いて直接的に構築することにより、小型高効率高性能な脳型ハードウェアの開発を行う。具体例としては、カオスニューラルネットワークリザバー、高次元複雑ダイナミクスによる最適化、スピン軌道トルクデバイスによるニューラルネットワーク等である。
実用化イメージ

この脳型ハードウェアは、ユーザ個人の情報の学習が必須なエッジ端末に有効で、例えば、補聴器や入れ歯に内蔵して心電や脳波、唾液成分などの学習により、異常検知を行う見守りデバイスなどへの応用が期待できる。

研究者

電気通信研究所 人間・生体情報システム研究部門 ソフトコンピューティング集積システム研究室

堀尾 喜彦  

Yoshihiko Horio

口臭

口腔バイオフィルム機能解析システム:「何がいるか?」から「何をしているか?」まで

前の画像
次の画像
特徴・独自性
  • 歯、舌、口腔粘膜には、500 種を超す膨大な数の微生物がバイオフィルムを形成し、齲蝕、歯周病、口臭などの口腔疾患、さらには歯科材料劣化の原因となります。
  • 私どもは、構成菌種や機能(代謝)をメタゲノム、メタボロミクスといったオミクス技術や最新の検出技術で解析すると共に、その多くが嫌気性菌である構成菌を生きたまま取り出し、高度嫌気性実験システムを用いて機能解析を行っています。「何がいるか?」から「何をしているか?」までを知ることで、初めてその制御(予防と治療)が可能となります。
実用化イメージ

口腔バイオフィルム性疾患(齲蝕、歯周病、口臭、誤嚥性肺炎など)のリスク診断
・ 薬剤や食材の口腔バイオフィルム機能への効果
・バイオフィルム性材料劣化の評価

研究者

大学院歯学研究科 歯科学専攻 エコロジー歯学講座(口腔生化学分野)

髙橋 信博  

Nobuhiro Takahashi

高耐圧・高出力トランジスタ

システム変革を鑑みた半導体材料から素子応用に関する 研究開発

前の画像
次の画像
特徴・独自性
  • (1)光通信用半導体レーザ:1981年、通信波長1.55μmでの単一縦モードでの室温連続発振。ファイバ当たりの伝送容量を25千倍の10Tb/sに増大。(2)窒化物半導体青色LED:InGaAlN提案(1987年)、発光材料InGaN単結晶薄膜成長(1989年)。本技術は市販の青色LED作製の標準技術。高周波・高出力トランジスタ:逆HEMT作製。車用トランジスタ実現のためGaN基板開発中。
実用化イメージ

光通信用分布帰還型レーザ作製技術:サブミクロン周期構造作製、レーザの作製プロセス・素子評価・シミュレーション/窒化物半導体関連技術:有機金属気相成長、結晶評価、発光素子‧太陽電池‧電子素子の作製と評価

研究者

未来科学技術共同研究センター 開発研究部 窒化物半導体の結晶成長と光デバイス・電子デバイスの研究

松岡 隆志  

Takashi Matsuoka

高周波トランジスタ

システム変革を鑑みた半導体材料から素子応用に関する 研究開発

前の画像
次の画像
特徴・独自性
  • (1)光通信用半導体レーザ:1981年、通信波長1.55μmでの単一縦モードでの室温連続発振。ファイバ当たりの伝送容量を25千倍の10Tb/sに増大。(2)窒化物半導体青色LED:InGaAlN提案(1987年)、発光材料InGaN単結晶薄膜成長(1989年)。本技術は市販の青色LED作製の標準技術。高周波・高出力トランジスタ:逆HEMT作製。車用トランジスタ実現のためGaN基板開発中。
実用化イメージ

光通信用分布帰還型レーザ作製技術:サブミクロン周期構造作製、レーザの作製プロセス・素子評価・シミュレーション/窒化物半導体関連技術:有機金属気相成長、結晶評価、発光素子‧太陽電池‧電子素子の作製と評価

研究者

未来科学技術共同研究センター 開発研究部 窒化物半導体の結晶成長と光デバイス・電子デバイスの研究

松岡 隆志  

Takashi Matsuoka

恒常的産生細胞

TSLP産生制御機構の解析

前の画像
次の画像
特徴・独自性
  • Thymic stromal lymphopoietin(TSLP)はアレルギー発症のマスタースイッチとして注目されているサイトカインで、アレルギー性疾患の予防および増悪化防止を目指した新たな創薬ターゲットである。「TSLP を恒常的に、しかも大量に産生するケラチノサイト株」の発見により、TSLP 産生抑制薬のハイスループットスクリーニングが可能になった。また本細胞は、TSLP を中心としたアレルギー研究並びにTSLP 産生調節薬の開発研究において非常に有用である。
実用化イメージ

本細胞は、TSLP産生誘導機構や機能の解析、TSLP産生阻害薬の探索、TSLP産生を指標とした免疫毒性活性評価等に活用できる。TSLPに関心のある企業と本細胞を用いた共同研究を希望する。

研究者

大学院薬学研究科 医療薬学専攻 医療薬学講座(生活習慣病治療薬学分野)

平澤 典保  

Noriyasu Hirasawa

抗真菌剤

微生物ゲノム情報を用いた抗菌剤創造薬システム

前の画像
次の画像
特徴・独自性
  • 農業・医療分野の動植物感染菌対策に必要な抗菌剤の開発においては、効率的創薬手法の確立が求められており、我々は微生物ゲノム科学を活用して連続的に新規抗菌剤を創出する新技術体系を確立した。新規創薬パイプラインでは、様々な基準抗真菌剤に対する糸状菌の網羅的な転写応答プロファイル解析から、創薬標的候補遺伝子の機能解析と候補化合物の系統的分別探索に有効な、1)細胞システム毎(エネルギー系、細胞膜生合成系、細胞壁系、細胞骨格系等、シグナル伝達系)のレポーターアッセイ系、2)化合物転写応答-表現型データベースによる統計解析を組み合わせた新剤評価系を構築して産業運用している。現在、化合物探索の共同開発が可能な状態にある。
実用化イメージ

研究者

大学院農学研究科 農芸化学専攻 生物化学講座(応用微生物学分野)

阿部 敬悦  

Keietsu Abe

高信頼ソフトウェア

プログラムの効率化および形式的検証

前の画像
次の画像
特徴・独自性
  • プログラムの効率の改善や形式的検証に関する研究を行っている。短期間で記述したプログラムは実行時間やメモリ使用量について非効率的であることが多いが、この問題に対し、プログラム変換によって機械的に改善する手法の開発に取り組んでいる。また、大規模なプログラムはその複雑さから予期せぬバグを含みやすいが、この問題に対しては、プログラム検証やモデル検査とよばれる数学的手法によって実行前に網羅的に検証する研究も進めている。
実用化イメージ

通常のソフトウェア開発では有限個のテストを通じて動作確認が行われるが、モデル検査器や定理証明支援系などのツールを用いることで、無限個の入力に対して動作が保証されたプログラムの作成を実現できる。

研究者

電気通信研究所 計算システム基盤研究部門 コンピューティング情報理論研究室

中野 圭介  

Keisuke Nakano

洪水

CFDに基づく将来の温熱風環境の予測・評価と、将来気候に適応可能な都市環境計画

前の画像
次の画像
特徴・独自性
  • 都市屋外の温湿度、風、汚染質濃度といった物理環境の数値シミュレーションによる予測や環境形成要因の解明実測調査による実態把握を行う。また、国・地域スケール、街区スケール、建物スケールの地球温暖化が進行した将来の屋外環境予測・熱中症評価を行う。
    さらに、平常時の夏の暑さや、稀に発生する台風や洪水に強い都市に対する形態(建物形状や配置、街路樹等)の影響を定量化する。
実用化イメージ

数値解析により、設計建物や街区計画、各種暑さ対策技術の導入が、地域の温熱環境や、風の道形成に与える「功罪」、さらには台風等災害発生時における悪影響を定量評価し、導入可否判断材料を提供する。

研究者

大学院工学研究科 都市・建築学専攻 サステナブル空間構成学講座(講座共通)

石田 泰之  

Yasuyuki Ishida

合成

超臨界水熱合成法による有機・無機ハイブリッドナノ粒子合成

前の画像
次の画像
特徴・独自性
  • 超臨界水を反応場とする有機修飾ナノ粒子の合成技術を発明した。超臨界反応場では有機分子と金属塩水溶液が均一状態で反応し、水分子が酸/塩基触媒として働き、有機修飾金属塩ナノ粒子を合成できる。このハイブリッドナノ粒子は有機分子を表面に有するため、溶剤に高濃度分散させてナノフルイッド、ナノインクとしたり、高分子とハイブリッド化させて有機・無機材料の機能を併せ持つ材料を創成することができる。
実用化イメージ

窒化ホウ素の有機修飾ナノ粒子はポリマーに分散させて、高熱伝導材料として使用できる。また酸化チタン、酸化ジルコニウムの有機修飾ナノ粒子は、ポリマーなどに高濃度分散させることにより高屈折率レンズ製造に応用できる。また、高活性ナノ触媒としての利用も期待される。現在、本技術に基づいて、超臨界ナノ材料技術開発コンソーシアム(参加企業およそ80 社)が設立されており、産業への応用や国家プロジェクトの提案などを積極的に推進している。

研究者

高等研究機構材料科学高等研究所 ソフトマテリアルグループ

阿尻 雅文  

Tadafumi Ajiri

機能性単分散ナノ粒子製造と実用化

前の画像
次の画像
特徴・独自性
  • 半導体、光触媒、誘電・圧電材料、磁性材料、塗料、化粧品、触媒などの機能性材料に利用するための、ナノ粒子や微粒子を液相で合成する。ナノ粒子や微粒子のサイズ、形態、構造、組成等をきわめて精密に制御し、それらの性質が均一な単分散粒子を調製する。企業が必要とする材料を提供するために、いわゆるテーラーメイドな粒子合成手法を開発している。
実用化イメージ

透明導電膜用インジウム-スズ酸化物(ITO)ナノ粒子、非鉛圧電アクチエーター用ビスマス系あるいはニオブ系ナノ粒子、誘電材料用チタン酸系ペロブスカイトナノ粒子、次世代光触媒用チタン系酸化物ナノ粒子、など多くの粒子を提供してきた。新規に開発した安価で比較的容易な液相大量合成法(ゲル- ゾル法等)により、粒子製造コストも抑えることができる。

研究者

国際放射光イノベーション・スマート研究センター 基幹研究部門 多元計測スマートラボ

村松 淳司  

Atsushi Muramatsu

有機−無機ナノハイブリッド材料の創製と応用

前の画像
次の画像
特徴・独自性
  • 液晶等高分子化合物と、金属、セラミックス等のナノ粒子のハイブリッド材料を、原子、分子レベルで構造、組成、表面特性を制御して、創製する。特に前者が有する高い加工性、適応性を、後者の特徴的な性質をカバーするような、相反機能(トレードオフ)を解消するようなナノハイブリッド材料を合成し、その応用の研究を実施している。この原子レベルでのハイブリッド化を可能にした手法によれば、無機ナノ粒子に温度応答による流動性という新たな性質を付加することに成功している。この手法を産業界で活用した企業や団体との共同研究を希望する。
実用化イメージ

研究者

国際放射光イノベーション・スマート研究センター 基幹研究部門 多元計測スマートラボ

村松 淳司  

Atsushi Muramatsu