行のキーワード 327ワード

電解質

発火や破裂の危険が少ない安全な電池の実現に貢献する

概要

小さな力で容易に伸縮する高分子電解質
https://www.t-technoarch.co.jp/data/anken/T19-753.pdf

従来技術との比較

従来の有機電解質は発火の危険があった。一方高分子化することで固体電解質化した高分子電解質はイオン伝導性が低かった。

特徴・独自性
  • 室温で10-4 S/cmクラスのLiイオン伝導度を持つ高分子電解質の合成に成功。
  • ミクロンサイズの多孔膜と光架橋性ポリエチレングリコール(PEG)の複合化により室温での高い性能発現とLiイオンの拡散を制御。
  • 広い電位窓(4.7 V)と高いLiイオン輸率(0.39)を実現。
  • 多孔膜を電解質中に形成することでデンドライト形成の抑止効果にも期待。
実用化イメージ

Liイオン電池用の安全な電解質として利用可能。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

藪 浩  

Hiroshi Yabu

電気化学

受精卵および幹細胞の新規品質評価法の開発

前の画像
次の画像
特徴・独自性
  • 走査型プローブ顕微鏡に基づく生体分子評価システムの探索に一貫して取り組み、プロテインアレイの構築とイムノアッセイへの応用を提案した。また、微小探針を改良して1細胞ごとのmRNA回収法を確立し、核酸-タンパク質の同時定量に取り組んでいる。走査型電気化学顕微鏡(SECM)を含むプローブ顕微鏡システムをツールとし、核酸、タンパク質、生体膜、細胞、初期胚を含む広い応用分野の開拓に成功した。これらの研究は初期胚研究への適用が期待できる。
実用化イメージ

体外受精-胚移植は、医療分野では不妊治療、畜産分野では優良家畜の効率的生産を可能としている。体外培養技術の進歩によりクオリティの高い胚の作出が可能となっているが、その後の子宮への胚移植、受胎率、産仔の成功率は依然として低い水準にある。これまで、受精卵の品質評価は形態観察に基づき行われてきた。我々は、単一受精卵ごとの呼吸活性を指標とした客観的な受精卵の品質評価法を開発した。我々の特許をもとに「受精卵呼吸測定装置」が装置化・実用化され、ウシ・マウス・ヒトの受精卵移植試験実施に至った。

研究者

大学院工学研究科 バイオ工学専攻 生体分子化学講座(生物電気化学分野)

珠玖 仁  

Hitoshi Shiku

過酷環境下で機能する化学イメージング・デバイスの開発

前の画像
次の画像
特徴・独自性
  • 強酸性の環境下で、水素イオンと塩化物イオンの濃度分布を、画像としてリアルタイム計測できるイメージング素子を開発した。pH の範囲は3.0 から0.5まで、塩化物イオン濃度は4M まで計測できる。従来、塩化物イオンに関しては、pH 6〜8の中性域で、0.01M以下の希薄溶液の濃度を計測できるだけであった。しかし、特殊なセンサー物質の探索や感応膜の作製方法を工夫することで、過酷環境下でも機能するデバイスの開発に成功した。
実用化イメージ

強酸性下で進行する金属の腐食現象など、各種化学反応の機構解明への応用が期待される。マイクロ流体チップへ組み込むことで、金属表面の触媒作用の解明などにも応用できるものと思われる。

研究者

大学院工学研究科 知能デバイス材料学専攻 材料電子化学講座

武藤 泉  

Izumi Muto

生物模倣材料・デバイスの開発

前の画像
次の画像
特徴・独自性
  • 生物の優れた機能を学び、材料・デバイスの創成に取り入れることで、生物を超える機能を示す機能を創出する『生物模倣工学』を目指しています。例えば、ムール貝に学んだ表面処理・接着剤の開発、ウツボカズラに学んだ抗生物付着基板の開発、ヘモグロビンに学んだ高活性燃料電池(水素・酵素・微生物等)の非白金触媒設計、生物の針に学んだ針型バイオセンサーなど多岐にわたります。
実用化イメージ

電気化学、高分子化学を基盤に金属空気電池・燃料電池・表面処理・接着・バイオセンサー等を含むエネルギー・バイオ・電気電子領域に関する技術・知見を提供します。

研究者

高等研究機構学際科学フロンティア研究所 新領域創成研究部学際基盤研究分野 デバイス・テクノロジー研究領域

阿部 博弥  

Hiroya Abe

表面科学に立脚した燃料電池電極触媒開発

前の画像
次の画像
特徴・独自性
  • 新規ナノデバイス開発には、異相界面における物理的、化学的相互作用の解明に基づいて、その構造設計指針を提示することが不可欠である。本研究分野では、よく規定された金属・合金表面系を物理的手法(超高真空下おける分子線エピタキシ)により構築した上で、走査プローブ顕微鏡や光電子分光による表面構造や電子状態解析し、得られる基礎的知見に基づいたナノ材料構造設計指針に関する研究を行っています。
実用化イメージ

従来の“触媒”を化学ナノデバイスとしてとらえ、その構築をボトムアップアプローチで進めていきたいと考えています。燃料電池自動車用の電極触媒開発など水素社会実現の鍵となる技術に関連しています。

研究者

大学院環境科学研究科 先端環境創成学専攻 環境創成計画学講座(環境材料表面科学分野)

和田山 智正  

Toshimasa Wadayama

new多元系酸化物ナノ粒子からなる高活性触媒開発

前の画像
次の画像
概要

多種の金属元素からなる多元系酸化物は、近年触媒材料として注目される材料である。当研究グループでは最近、多種の金属元素からなる多元系酸化物ナノ粒子の合成法を確立した。得られた触媒は、高活性な電気化学触媒(電極触媒)材料、あるいは物質・エネルギー変換反応を進行させる触媒として機能することが期待できる。

従来技術との比較

従来研究では、多元素酸化物のナノ粒子化は困難であったが、本研究では粒子径の制御された単分散ナノ粒子の合成に成功した。

特徴・独自性
  • 従来法では合成できなかった多元系酸化物ナノ粒子が合成できる
  • 目的とする反応に応じて、様々な金属元素・組成を有するナノ粒子を設計可能
  • 従来触媒では達成できなかった活性・安定性を有すると期待できる
実用化イメージ

高効率な電気化学的物質・エネルギー変換反応、選択的な物質変換(バイオマス等)反応を実現する触媒材料として、環境・エネルギー問題に貢献できると期待できる。

研究者

多元物質科学研究所 プロセスシステム工学研究部門 超臨界ナノ工学研究分野

岩瀬 和至  

Kazuyuki Iwase

電気化学表面力装置

表面力測定による材料ナノ界面科学の創製

前の画像
次の画像
特徴・独自性
  • 固- 液界面現象、そして表面間の相互作用を分子レベルで具体的に解明することを目的として研究しています。中心手段は、2つの表面間に働く相互作用力の距離依存性を直接測定する表面力測定、そして当研究分野で開発した液体ナノ薄膜の構造化挙動を高感度で評価できる共振ずり測定法です。従来困難であった不透明試料( 金属、セラミック、高分子など) が測定できるツインパス型表面力装置も独自開発し、電極界面の評価も行っています。
実用化イメージ

機能材料界面における表面電荷や吸着状態等の特性やナノレオロジー・ナノトライボロジーの評価が可能です。機械、潤滑剤、ナノ材料、塗料・シーラント、化粧品等の業種に対して共同研究・学術指導を行う用意があります。

研究者

未来科学技術共同研究センター 開発研究部 界面分子エンジニアリング

栗原 和枝  

Kazue Kurihara

電気伝導

第一原理計算に基づく新材料・素子機能の理論設計

前の画像
次の画像
特徴・独自性
  • 超高密度磁気記録用読出しヘッドや不揮発性スピンメモリなど高機能なスピントロニクス素子を実現するため、高スピン偏極材料を用いた磁気抵抗素子における電気伝導に関する理論研究に取り組んでいます。また、磁化の熱ゆらぎに対する耐久性向上を目指して、垂直磁気材料を用いた磁気抵抗素子の研究にも着手しています。強磁性体と酸化物の界面での結晶構造を理論的に設計して、磁気抵抗性能を向上させるための指針を得ることに成功しています。経験的パラメタを必要としない第一原理計算手法は、スピントロニクス分野に限らず、多様な材料研究・開発の場において重要な役割を果たすものと確信しています。共同研究のご要望がございましたら、ご一報ください。
実用化イメージ

研究者

電気通信研究所 計算システム基盤研究部門 物性機能設計研究室

白井 正文  

Masafumi Shirai

酸化物エレクトロニクス材料の創製

前の画像
次の画像
特徴・独自性
  • 機能性酸化物材料の創製と物性・機能開発を行う研究に取り組んでいます。パルスレーザー堆積法やスパッタ法を用いた薄膜作製やバルク合成、そして新合成ルートの開発を行っています。最近は、電気伝導性をもつ希土類酸化物、透明導電性をもつ室温強磁性体、ビスマス単原子層を含む層状超伝導体等の酸化物材料を扱っています。今後は、扱う材料の幅を広げ、酸化物へテロエピタキシーにも取り組んでいきます。
実用化イメージ

新規導電性酸化物を活用する酸化物エレクトロニクスや、透明強磁性体や新規強磁性体を用いた酸化物スピントロニクスの分野での共同研究。

研究者

大学院理学研究科 化学専攻 境界領域化学講座(無機固体物質化学研究室)

福村 知昭  

Tomoteru Fukumura

電気伝導性

高機能カーボンナノチューブーアルミナ複合材料の開発

前の画像
次の画像
特徴・独自性
  • 分散が困難とされていた、カーボンナノチューブ(CNT) を配合したセラミック複合材料の開発に関して、CNT の剛性ならびに表面性状を制御することにより均一分散させたCNT/アルミナ複合材料の作製に成功した。さらに、無加圧焼結によりアルミナ単味の強度特性を大きく超える複合体を作製できている。これを背景に、試作したCNT/ アルミナ複合材料の機械・電気的特性の向上と実用化に向けた基礎研究を行っている。
実用化イメージ

トライボ応用、強度と耐摩耗性が要求される人口股関節等の生体材料、電気ひずみ効果を利用したマイクロアクチュエータ、数GHz 〜数10GHz 程度の周波数帯における電波吸収材料への応用展開が期待される。

研究者

未来科学技術共同研究センター 開発研究部 強靭化と高容量化を両立させた環境配慮型蓄電体の開発に関する研究

橋田 俊之  

Toshiyuki Hashida

電気分解

セラミックスのイオン輸送を利用した燃料電池とエネルギー貯蔵

前の画像
次の画像
特徴・独自性
  • イオン導電性セラミックスを用いて高温で動作する固体酸化物形燃料電池は、様々な燃料を高い効率で利用することができる発電システムです。当研究室では、さらなる高性能、低コスト、高信頼性を達成するために、材料の電気化学的・機械的挙動について、基礎的・多角的な研究を行っています。また、燃料電池の逆反応を用いて、再生可能エネルギーから得た電力を水素やメタンとして貯蔵する研究も行っています。
実用化イメージ

学内外の研究機関や企業・団体と協力しながら、燃料電池技術の商用化に向けて取り組んでいます。また、機能性材料のイオン輸送、界面反応、機械的特性の評価・解析技術を通して、新技術の開発にも貢献します。

研究者

大学院環境科学研究科 先進社会環境学専攻 エネルギー資源学講座(分散エネルギーシステム学分野)

川田 達也  

Tatsuya Kawada

電極

卑金属・半金属およびその合金によるオープンセル型ナノポーラス材料の開発

前の画像
次の画像
特徴・独自性
  • ナノポーラス金属は、緻密材に比べて桁違いに大きい表面積を有し、次世代高機能材料として応用が期待されている。その主な作製法として知られる水溶液による脱成分法は、微細・均一な多孔質構造の形成を可能にするが、その形成原理は腐食であり、標準電極電位の高い貴金属において多孔質材料の作製が可能であるが、卑金属では酸化されてしまう。本部門では金属溶湯による簡便な脱成分技術を新たに考案した。この技術によれば、貴・卑に依存せず純金属や合金を多孔質化することが可能で、かつ、無酸素脱成分工程であるために酸化も生じない。従って、これまで作製が困難であった数々の卑金属(Ti、 Ni、 Cr、 Mo、 Fe、Co 等)・半金属元素およびそれらの合金において、オープンセル型ナノポーラス金属材料の開発に成功した。
実用化イメージ

新規電極、触媒、フィルター等に実用が期待できるほか、Niなどの毒性元素を含有する生体金属材料表面からこれを除去する技術としても利用でき、関連企業・団体との共同研究・開発を強く希望する。

研究者

金属材料研究所 物質創製研究部 非平衡物質工学研究部門

加藤 秀実  

Hidemi Kato

電極材料

創・省エネルギー無機材料の創製

前の画像
次の画像
特徴・独自性
  • 新しい材料の登場は、我々が予想もしない波及効果を生み出す力を秘めています。私たちの研究グループでは、化学結合や電子構造の理解に基づく材料設計、固体中のイオン移動を利用した材料創製プロセス、固相、液相、気相法など各種のプロセスを基盤技術として、エネルギー製造や省エネルギーを成し遂げる新材料を提供すべく、材料の設計から、製造プロセスの開発、プロトタイプ素子の作製までをカバーした研究を展開しています。
実用化イメージ

現在は、太陽電池、燃料電池を主なターゲットとし、酸化物半導体、プロトン伝導性電解質・電極材料などの研究を実施しています。新しい無機材料の創製技術の適用範囲は、これらに限定的されるものではありません。

研究者

多元物質科学研究所 附属金属資源プロセス研究センター 原子空間制御プロセス研究分野

小俣 孝久  

Takahisa Omata

電極触媒

表面科学に立脚した燃料電池電極触媒開発

前の画像
次の画像
特徴・独自性
  • 新規ナノデバイス開発には、異相界面における物理的、化学的相互作用の解明に基づいて、その構造設計指針を提示することが不可欠である。本研究分野では、よく規定された金属・合金表面系を物理的手法(超高真空下おける分子線エピタキシ)により構築した上で、走査プローブ顕微鏡や光電子分光による表面構造や電子状態解析し、得られる基礎的知見に基づいたナノ材料構造設計指針に関する研究を行っています。
実用化イメージ

従来の“触媒”を化学ナノデバイスとしてとらえ、その構築をボトムアップアプローチで進めていきたいと考えています。燃料電池自動車用の電極触媒開発など水素社会実現の鍵となる技術に関連しています。

研究者

大学院環境科学研究科 先端環境創成学専攻 環境創成計画学講座(環境材料表面科学分野)

和田山 智正  

Toshimasa Wadayama

new多元系酸化物ナノ粒子からなる高活性触媒開発

前の画像
次の画像
概要

多種の金属元素からなる多元系酸化物は、近年触媒材料として注目される材料である。当研究グループでは最近、多種の金属元素からなる多元系酸化物ナノ粒子の合成法を確立した。得られた触媒は、高活性な電気化学触媒(電極触媒)材料、あるいは物質・エネルギー変換反応を進行させる触媒として機能することが期待できる。

従来技術との比較

従来研究では、多元素酸化物のナノ粒子化は困難であったが、本研究では粒子径の制御された単分散ナノ粒子の合成に成功した。

特徴・独自性
  • 従来法では合成できなかった多元系酸化物ナノ粒子が合成できる
  • 目的とする反応に応じて、様々な金属元素・組成を有するナノ粒子を設計可能
  • 従来触媒では達成できなかった活性・安定性を有すると期待できる
実用化イメージ

高効率な電気化学的物質・エネルギー変換反応、選択的な物質変換(バイオマス等)反応を実現する触媒材料として、環境・エネルギー問題に貢献できると期待できる。

研究者

多元物質科学研究所 プロセスシステム工学研究部門 超臨界ナノ工学研究分野

岩瀬 和至  

Kazuyuki Iwase

電源システム

統一電源プラグ・システム

前の画像
次の画像
特徴・独自性
  • 身の回りのあらゆる電気機器において、電源アダプタを介さずに、共通に使用可能な1 本の電源ケーブルで電力供給を可能にするような電源プラグ・システムを開発した。さらに、電気機器の電源電流波形を監視することによってその動作状態を把握し、機器のヘルスモニタリングを行いつつ、異常診断や故障を予知し、事前にユーザーに伝えることを可能とする全く新しい知的電源システムを実現し、家電機器を安心して快適に使えるよう、全ての家電機器の利用スタイルを革新する研究も行っている。特に、個々の電気機器をその使用状態において、電源コードに流れる電流波形を観測し、それを人工知能に学習させ、異常や故障或いは劣化モードと電流波形との関係を明らかにすることにより、機器の異常診断や故障の予知を行おうというものである。
実用化イメージ

研究者

大学院工学研究科 通信工学専攻 波動工学講座(微小光学分野)

山田 博仁  

Hirohito Yamada

真空

固液界面真空プロセスの開発とその応用

前の画像
次の画像
特徴・独自性
  • 様々な物質の液体状態を、高真空環境下で安定化させ、そのマイクロ/ナノレベルの成形技術や診断技術の開発,また,物性測定による新現象の発見,およびそのプロセス応用に取り組んでいる。特に、膜厚が数nmのイオン液体膜の作製や単結晶品質のSiCなどの無機薄膜の高速VLS成長、イオン液体を介した有機半導体、高分子薄膜・結晶材料のプロセスは,世界的にも類を見ない独自技術である。
実用化イメージ

wet系プロセスの利点を真空プロセスに取り入れた次世代の半導体プロセスへの応用開発、有機半導体の新しい精製技術の開発,イオン液体を介した蒸着法による再結晶が困難な有機化合物の単結晶の試作など。

研究者

大学院工学研究科 応用化学専攻 原子・分子制御工学講座

松本 祐司  

Yuji Matsumoto

薄膜・界面に発現する多様な物性の開拓と応用展開

前の画像
次の画像
特徴・独自性
  • 真空プロセスを介した薄膜化技術を用いて各種物質の薄膜化や界面形成を行い、それら試料における機能の探索や物性開拓の基礎研究を行っています。新しい物質群の薄膜や界面の形成は工学的な側面から将来的な利用に欠かせません。また、薄膜や界面で発現する物性を機能として利用しようとする際、理学的な側面で理解を進めることも大切と考えています。そうした多角的な視野で薄膜と界面を活用する素子の開発に取り組んでいます。
実用化イメージ

最近では、磁気素子、半導体接合素子、超伝導接合素子、トポロジカル物質群の薄膜化などの研究を進めていますので、それらに関連する素子開発の共同研究。

研究者

金属材料研究所 理研・物理学専攻金属物理学講座

塚﨑 敦  

Atsushi Tsukazaki

電子エネルギー損失分光

ナノスケールでの結晶構造・電子状態解析技術の開発と応用

前の画像
次の画像
特徴・独自性
  • 透過型電子顕微鏡(TEM)で、組成・結晶構造を評価した領域の精密構造解析、物性測定を可能とするため、独自の実験装置・解析技術開発(分光型収束電子回折TEM、高分解能EELSTEM、軟X線発光分光TEM)と、その物性物理学への基礎的応用(フラレン、ナノチューブ、ボロン化合物、GMR物質、準結晶等)を行っている。また、東北大オリジナルの軟X線発光分光装置の実用化を目指し、企業等との共同研究開発を継続中。
実用化イメージ

半導体、誘電体、金属などの顕微解析による構造・物性評価に関する共同研究や、分析技術に関する学術指導が想定される。

研究者

多元物質科学研究所 計測研究部門 電子回折・分光計測研究分野

寺内 正己  

Masami Terauchi

電子顕微鏡

ナノスケールでの結晶構造・電子状態解析技術の開発と応用

前の画像
次の画像
特徴・独自性
  • 透過型電子顕微鏡(TEM)で、組成・結晶構造を評価した領域の精密構造解析、物性測定を可能とするため、独自の実験装置・解析技術開発(分光型収束電子回折TEM、高分解能EELSTEM、軟X線発光分光TEM)と、その物性物理学への基礎的応用(フラレン、ナノチューブ、ボロン化合物、GMR物質、準結晶等)を行っている。また、東北大オリジナルの軟X線発光分光装置の実用化を目指し、企業等との共同研究開発を継続中。
実用化イメージ

半導体、誘電体、金属などの顕微解析による構造・物性評価に関する共同研究や、分析技術に関する学術指導が想定される。

研究者

多元物質科学研究所 計測研究部門 電子回折・分光計測研究分野

寺内 正己  

Masami Terauchi