登録されているキーワード 2946ワード(研究テーマ449件)

可視光応答性

陽極酸化法により創製した二酸化チタンの光誘起機能

前の画像
次の画像
特徴・独自性
  • Ti の陽極酸化は着色技術として実用に供せられている。着色の原理は表面に形成したチタン酸化層の厚み制御による光干渉である。本研究の特徴はこの酸化膜の結晶性を高めることで、光触媒や超親水性等の光誘起性能を付与することで、着色技術とは異なる条件の電気化学条件を選定する点に独自性がある。簡便で廉価な技術によりTi やTi 合金の表面を改質し、光誘起性能による環境浄化性を備えた材料の高機能化を目指す。
実用化イメージ

用途としては、環境浄化材料、生体適合材料・抗菌材料等が考えられ、業界としては脱臭・浄化を手掛ける環境浄化に取り組む業界や、医療器具・医療材料・福祉用具等の医療・福祉業界、そして構造用チタン開発に取り組む業界があげられる。

研究者

金属材料研究所 附属新素材共同研究開発センター 物質創製研究部

正橋 直哉  

Naoya Masahashi

ガス

気相化学種の同時定量技術・ソフトウェア

前の画像
次の画像
概要

フーリエ変換赤外線分光法 (FT-IR) を用いて、活性酸素・窒素種 (O3、 H2O2、 NOx、 HNOx)やSOx、 COx等の気相化学種を同時に定量する技術を開発しています。

従来技術との比較

標準ガスを用いた校正曲線からの密度定量は、標準ガスとして入手できない化学種に対応できない等の問題を抱えていました。
本技術は、 標準ガスの校正をせずに、20種を超える化学種の同時定量を可能にします。

特徴・独自性
  • 手軽に1クリックで同時密度定量可能なソフトウェア
  • 化学種の吸収断面積データベースを使用
  • 様々な装置関数や測定条件に対応可能
実用化イメージ

気相化学種を密度定量したいという様々なニーズに対して、直接貢献できる。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(プラズマ理工学分野)

佐々木 渉太  

Shota Sasaki

ガスタービン

高圧ガスタービン環境における燃焼評価と気流噴射弁の技術開発

前の画像
次の画像
特徴・独自性
  • 燃焼は、温度、濃度、速度、高速化学反応といった多次元のダイナミックスが複合した複雑な過程です。当研究室は、高圧ガスタービン環境を実現できる世界的にも希な高圧燃焼試験装置を有し、高温高圧下の燃焼実験ならびにレーザー分光計測に独自性があります。航空宇宙推進系のみならず各種高圧化学反応炉の設計技術と安全評価技術、新燃料の燃焼技術、さらには高圧下の液体微粒化技術の研究開発にも取り組んでいます。
実用化イメージ

航空宇宙、自動車、電力、工業炉、化学プラント業界における、多様な燃料に対するガスタービン燃焼と評価、高圧噴霧生成と制御、高圧下のレーザー燃焼診断、化学反応炉の安全設計等に関する連携が可能です。

研究者

流体科学研究所

小林 秀昭  

Hideaki Kobayashi

風の道

CFDに基づく将来の温熱風環境の予測・評価と、将来気候に適応可能な都市環境計画

前の画像
次の画像
特徴・独自性
  • 都市屋外の温湿度、風、汚染質濃度といった物理環境の数値シミュレーションによる予測や環境形成要因の解明実測調査による実態把握を行う。また、国・地域スケール、街区スケール、建物スケールの地球温暖化が進行した将来の屋外環境予測・熱中症評価を行う。
    さらに、平常時の夏の暑さや、稀に発生する台風や洪水に強い都市に対する形態(建物形状や配置、街路樹等)の影響を定量化する。
実用化イメージ

数値解析により、設計建物や街区計画、各種暑さ対策技術の導入が、地域の温熱環境や、風の道形成に与える「功罪」、さらには台風等災害発生時における悪影響を定量評価し、導入可否判断材料を提供する。

研究者

大学院工学研究科 都市・建築学専攻 サステナブル空間構成学講座(講座共通)

石田 泰之  

Yasuyuki Ishida

画像処理

ビッグデータ時代の画像コンピューティングとセキュアICT

前の画像
次の画像
特徴・独自性
  • 第一に、実世界にあふれる膨大な画像データのセンシング・処理・認識・解析の研究を行っています。特に、サブピクセル分解能の画像解析を可能にする「位相限定相関法」を発案し、個人識別(顔、指掌紋、FKP、虹彩、X 線画像の認識)、マシンビジョン、多視点3D 計測、画像検索、医用画像解析などに応用しています。
  • 第二に、世界最高性能の耐タンパー暗号処理技術および生体認証技術を核にしたセキュアICT の基盤システムを研究しています。
実用化イメージ

画像情報工学、情報セキュリティ、バイオメトリクス、LSI、組込み技術の分野における産学連携を進めることができます。既に多数の企業、大学、研究機関、医療機関などの研究者や技術者が、分野を問わず訪れています。情報知能システム(IIS)研究センターのスタッフがご相談を受け付けます。
info@iisrc.ecei.tohoku.ac.jp

研究者

青木 孝文  

Takafumi Aoki

深層学習

ビッグデータの意味解析を可能にする自然言語処理技術

前の画像
次の画像
特徴・独自性
  • 膨大な言語データを意味的に解析し必要な情報・知識を抽出する技術、抽出した情報・知識を分類・比較・要約する技術、それらを可能にする世界最速の仮説推論技術など、先進的な自然言語処理技術を研究開発しています。また、これら基盤技術をウェブやソーシャルメディアなどのビッグデータに適用し、大規模な情報・知識マイニングや信頼性の検証支援、耐災害情報処理などに応用する実践的研究も展開しています。
実用化イメージ

言語意味解析に基づく高度なテキストマイニングによる市場動向調査や技術動向調査、隠れたニーズやリスクの発見、社内文書の構造化・組織化による知識管理支援、対話システムなど、多様な分野・業種との連携が可能です。

研究者

言語AI研究センター

乾 健太郎  

Kentaro Inui

画像認識

ビッグデータ時代の画像コンピューティングとセキュアICT

前の画像
次の画像
特徴・独自性
  • 第一に、実世界にあふれる膨大な画像データのセンシング・処理・認識・解析の研究を行っています。特に、サブピクセル分解能の画像解析を可能にする「位相限定相関法」を発案し、個人識別(顔、指掌紋、FKP、虹彩、X 線画像の認識)、マシンビジョン、多視点3D 計測、画像検索、医用画像解析などに応用しています。
  • 第二に、世界最高性能の耐タンパー暗号処理技術および生体認証技術を核にしたセキュアICT の基盤システムを研究しています。
実用化イメージ

画像情報工学、情報セキュリティ、バイオメトリクス、LSI、組込み技術の分野における産学連携を進めることができます。既に多数の企業、大学、研究機関、医療機関などの研究者や技術者が、分野を問わず訪れています。情報知能システム(IIS)研究センターのスタッフがご相談を受け付けます。
info@iisrc.ecei.tohoku.ac.jp

研究者

青木 孝文  

Takafumi Aoki

キャリブレーションを必要としない高度ビジョンシステム

前の画像
次の画像
特徴・独自性
  • 生産現場におけるロボット導入の障害は、完ぺきな環境整備とティーチィングである。ビジョンを援用して環境や作業手順を自動で認識できれば、ロボットの導入は飛躍的に容易になるが、ビジョンシステムにおける事前の条件出し(キャリブレーション)の負担が大きい。フィードバック制御を用いれば、目標画像(ロボットが行うべき作業の写真)と現在画像(カメラからリアルタイムに得られる画像)をキャリブレーションなしで一致させることができる。この技術をビジュアルサーボという。
実用化イメージ

ビジュアルサーボの導入でカメラの配置が自由になり、キャリブレーションレスになり、ビジョンシステム導入の障害を容易に解決可能である。

研究者

大学院情報科学研究科 システム情報科学専攻 知能ロボティクス学講座(知能制御システム学分野)

橋本 浩一  

Koichi Hashimoto

加速度センサ

ウェラブルセンサを用いた身体活動の評価

前の画像
次の画像
特徴・独自性
  • 身体活動時に装着した加速度センサをはじめとするウェラブルセンサの信号処理により身体活動の評価を行う研究。これまでに気圧センサと加速度センサにより、階段や坂道昇降の評価を可能とするアルゴリズム、加速度信号から歩幅を評価するアルゴリズムを提案、実証している。
実用化イメージ

通信機能の搭載あるいはスマートフォンなどへの実装により操作フリーで情報を処理し、わかりやすくユーザーに提示することが可能である。健康やスポーツ活動のモニタリングに利用可能である。

研究者

大学院医工学研究科 医工学専攻 社会医工学講座(健康維持増進医工学分野)

永富 良一  

Ryoichi Nagatomi

可塑性

細胞内在の転写因子活性の定量評価

前の画像
次の画像
特徴・独自性
  • 遺伝子発現プロファイルを計測する手法は多様にあるが、遺伝子の発現を制御する転写因子の活性を定量評価する技術は不足している。我々は生体組織内細胞や培養細胞が発現する複数の内在転写因子の転写活性を直接定量評価する技術を開発した。本技術を用いることにより病態や生理活動に関連して生体組織内細胞の状態がどのように変化するのか解析することができる。転写因子活性を指標にした慢性疾患の病理解明、転写因子活性をモニターすることによる医薬品の開発や薬品の効能、副作用のスクリーニングなどに有用であると考えられる。
実用化イメージ

研究者

大学院生命科学研究科 脳生命統御科学専攻 神経ネットワーク講座(脳機能発達分野)

安部 健太郎  

Kentaro Abe

型枠

学校

教員のワークライフバランスと学校の働き方改革

前の画像
次の画像
特徴・独自性
  • 長年、教員の労働時間に関する基礎研究を行ってきました。2006年、2016年に実施された文部科学省「教員勤務実態調査」の中心メンバーとして労働時間の正確な測定技術の開発に従事してきました。その過程で、長時間労働や多忙感をもたらす要因をこれまで明らかにしてきました。ここ最近は、医学との共同研究を進めており、教員が心身ともに健康を維持できるようなマネジメントのあり方を追求しています。
実用化イメージ

学校の業務効率化や教員の健康増進に寄与したいと思います。
校務運営システムの開発企業、労働者の健康管理デバイスの開発企業、ICT、AI、ロボットを学校に導入しようとする企業との連携の可能性があります。

研究者

大学院教育学研究科 総合教育科学専攻 教育学講座(教育政策科学)

青木 栄一  

AOKI Eiichi

学校現場

学校現場における教員および児童生徒によるICT活用に関する実証研究

前の画像
次の画像
特徴・独自性
  • 我が国の初等・中等教育の学校現場におけるICT活用について研究している。学校現場、とりわけ公立学校の義務教育におけるテクノロジー導入を考える際には、児童生徒の学力向上というミッションからのブレがないことや、多忙な教員にとって現実的かつ持続可能であること、低廉なコスト、さらには公教育における平等性のバランスなどの「宿命」が存在する。これらを勘案した上でのICT活用について、より実証的な研究を目指していることが特徴である。
  • これまで、(1)教員に広く用いられやすいICT は実物投影機であり、その活用については各教員による授業の個性と関係していることの解明、(2)デジタル教科書等を比較的シンプルな工数で開発する技術、(3)小学生向けのキーボード入力学習e ラーニングの開発などに取り組んできた。
実用化イメージ

我が国の初等・中等教育の学校現場を対象とした教員向け授業支援ツールや児童生徒向けデジタル教材等の開発に関するコンサルティング等が考えられる。

研究者

大学院情報科学研究科 人間社会情報科学専攻 メディア情報学講座(情報リテラシー論分野)

堀田 龍也  

Tatsuya Horita

活性

新型コロナウイルス治療薬・消毒薬の評価

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 感染性を有する新型コロナウイルスを使用し、新型コロナウイルスに対する新規治療薬候補の評価や開発、併せて消毒剤の評価なども行っています。さらに作用機序や耐性機序に踏み込むことも可能です。ほかにもインフルエンザウイルスから薬剤耐性菌までの同時評価が必要な場合はご相談ください。これまでに国内外製薬企業、関連企業との共同研究で、臨床薬の基礎開発から臨床応用までの経験があります。
実用化イメージ

阻害剤や消毒剤などの開発・評価において、目的の微生物だけでなく、同一施設で、条件をそろえて幅広く対応でき、効果の比較が容易です。野生型だけでなく、変異型にも対応可能です。

研究者

災害科学国際研究所 災害医学研究部門 災害感染症学分野 医学研究科・医学部・大学病院・東北メディカル・メガバンク機構(兼務)

児玉 栄一  

Eiichi Kodama

活性化

がん病巣の活性化因子の探索

前の画像
次の画像
特徴・独自性
  • 主要臓器に転移を来したがん細胞は、リンパ節を摘出すると活性化する。この臨床現場で散見される事象にどんな分子が関与するのか?わたしたちの研究室では遠隔転移活性化マウスモデルを開発し、この活性化因子を探索している。このモデルではヒトのリンパ節と同等の大きさを有するMXHマウスを使用しており、 MXHマウスは当該研究室のオリジナルである。また、本モデルでの転移活性化率は100%を達成する。転移活性化分子の探索と同定は、新規薬剤の開発のみならず、がんの超早期診断が可能な新たな診断機器の開発につながるものと期待される。
実用化イメージ

製薬会社:がん活性化抑制分子や免疫活性化分子の探索から製剤化が可能
医療機器メーカー:がんの超早期診断が可能な新たな診断機器の開発

研究者

大学院歯学研究科 歯科学専攻 病態マネジメント歯学講座(顎顔面口腔腫瘍外科学分野)

Sukhbaatar Ariunbuyan  

Sukhbaatar Ariunbuyan

活性酸素種

気相化学種の同時定量技術・ソフトウェア

前の画像
次の画像
概要

フーリエ変換赤外線分光法 (FT-IR) を用いて、活性酸素・窒素種 (O3、 H2O2、 NOx、 HNOx)やSOx、 COx等の気相化学種を同時に定量する技術を開発しています。

従来技術との比較

標準ガスを用いた校正曲線からの密度定量は、標準ガスとして入手できない化学種に対応できない等の問題を抱えていました。
本技術は、 標準ガスの校正をせずに、20種を超える化学種の同時定量を可能にします。

特徴・独自性
  • 手軽に1クリックで同時密度定量可能なソフトウェア
  • 化学種の吸収断面積データベースを使用
  • 様々な装置関数や測定条件に対応可能
実用化イメージ

気相化学種を密度定量したいという様々なニーズに対して、直接貢献できる。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(プラズマ理工学分野)

佐々木 渉太  

Shota Sasaki

活性窒素種

気相化学種の同時定量技術・ソフトウェア

前の画像
次の画像
概要

フーリエ変換赤外線分光法 (FT-IR) を用いて、活性酸素・窒素種 (O3、 H2O2、 NOx、 HNOx)やSOx、 COx等の気相化学種を同時に定量する技術を開発しています。

従来技術との比較

標準ガスを用いた校正曲線からの密度定量は、標準ガスとして入手できない化学種に対応できない等の問題を抱えていました。
本技術は、 標準ガスの校正をせずに、20種を超える化学種の同時定量を可能にします。

特徴・独自性
  • 手軽に1クリックで同時密度定量可能なソフトウェア
  • 化学種の吸収断面積データベースを使用
  • 様々な装置関数や測定条件に対応可能
実用化イメージ

気相化学種を密度定量したいという様々なニーズに対して、直接貢献できる。

研究者

大学院工学研究科 電子工学専攻 物性工学講座(プラズマ理工学分野)

佐々木 渉太  

Shota Sasaki

活断層

活断層と地震ハザード評価

前の画像
次の画像
特徴・独自性
  • 地形・地質調査を通じて、活断層での地震発生履歴を解明し、甚大な被害をもたらす内陸地震の発生規模と確率を予測する研究を行っている。また、三陸海岸の数万年?数十万年の超長期の地殻変動を解明し、海溝型超巨大地震の発生サイクルの解明を目指している。さらに、大地震の続発性・相互連鎖性を説明する断層モデルを数値計算で再現し、地震の発生予測の高精度化を行っている。
実用化イメージ

活断層の調査にあたっては大規模な調査溝掘削や新しい調査・探査技術の開発が欠かせない。地質・建設コンサルタントなど土木関連企業との連携を考えたい。

研究者

災害科学国際研究所 災害評価・低減研究部門 陸域地震学・火山学研究分野

遠田 晋次  

Shinji Toda

活動パターン

非接触方式による生体信号計測

前の画像
次の画像
概要

生体情報を完全非接触で取得するウェアレス生体信号計測に関して研究を行っています。特に、ビデオカメラで取得可能な脈波信号(映像脈波)と、室内の電波環境変化から得られる人の活動パターン(活動量)に注目し、これらを医療や健康管理に活用するための技術開発を進めています。

従来技術との比較

従来のような皮膚に接触させるセンサを用いることなく、完全非接触で心拍数などの生体情報を計測することを可能とします。

特徴・独自性
  • 映像脈波に関しては、従来の心拍数に加えて血圧値や血中酸素飽和度などを推定することを目指し、推定モデルと撮像方法の改良を通して推定精度の向上を図っています。
  • 電波による活動パターン推定では、人の移動を模した自走ロボットを用いることで、人を使ったデータ収集が不要なモデル構築を目指しています。
実用化イメージ

ウェアレス生体計測は、センサ装着が難しい対象者や環境での計測に対して有用な技術です。また、センサ装着のし忘れがないため、長期間にわたる生体データ収集などにも活用が期待できます。

研究者

サイバーサイエンスセンター 研究開発部 サイバーフィジカルシステム研究部

杉田 典大  

Norihiro Sugita

カテーテル

マイクロ・ナノマシニング技術を⽤いた低侵襲医療機器・ヘルスケア機器

前の画像
次の画像
特徴・独自性
  • 精密機械加工技術、MEMS(微小電気機械システム)技術などを用いて小さくとも様々な多機能を実現する新たな医療機器、ヘルスケア機器を開発しています。体内で検査治療を行う内視鏡やカテーテルを高機能化するほか、今までにない新たな医療機器を開発し、より精密で安全な検査・治療、新たな検査・治療の実現を目指します。また、体表に装着する薄く軽い高機能なデバイスにより、場所や時間の制約のない新たなヘルスケアを目指します。
実用化イメージ

基礎研究の他、実用化を目指し臨床医師および医療機器メーカーをはじめとした企業と協力して開発を進めています。また、大学から企業への橋渡しの目的で大学発ベンチャー企業を起業し共同した開発を進めています。

研究者

大学院医工学研究科 医工学専攻 医療機器創生医工学講座(ナノデバイス医工学分野)

芳賀 洋一  

Yoichi Haga