Development of Compound Semiconductor Radiation Detectors


update:2020/06/16
NEXT
PREV
Features and Uniqueness

The main research subject of our group is developing material purification methods, crystal growth methods and detector fabrication technologies for compound semiconductor radiation detectors. Our group intensely studies a compound semiconductor, thallium bromide (TlBr), for fabrication of gamma-ray detectors for the advanced radiation applications. The attractive physical properties of TlBr lie in its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3) and wide bandgap (2.68 eV). Due to the high atomic number and high density, TlBr exhibits high photon stopping power. The wide bandgap of TlBr permits the device low-noise operation at and above room temperatures.

Practical Application

Our group focuses on development of compound semiconductor radiation detectors for advanced radiation applications including ultra-high resolution PET systems, ultra-high resolution SPECT systems, photon counting CT systems and Compton cameras. We hope to conduct collaborative research with a willing company for a practical application of this technology in industry.

Keywords

Researchers

Graduate School of Engineering

Keitaro Hitomi, Associate Professor
Doctor of Engineering