登録されている研究テーマ 416件

ファーマコゲノミクス解析に基づく個別化薬物療法

前の画像
次の画像
特徴・独自性
  • 東北メディカル・メガバンク機構が構築した一般住民バイオバンクの全ゲノム配列情報を活用して、薬物代謝酵素における約1000 種の組換え遺伝子多型バリアントを網羅的に作製・機能評価する。これにより、これまで見落とされてきた薬物代謝酵素活性に影響を及ぼす重要な低頻度遺伝子多型を同定し、遺伝子型から表現型を高精度で予測できる薬物応答性予測パネルや独自のコンパニオン診断薬(核酸クロマトグラフィー法)を構築する。
実用化イメージ

核酸クロマトグラフィー法は尿糖や妊娠検査薬のようなものであり、キットが成功すれば、簡便で大型の検出機器を必要としないため、大病院だけでなく中小病院や診療所レベルでも遺伝子多型診断の導入が可能になると考えられる。

研究者

大学院薬学研究科

平塚 真弘  

Masahiro Hiratsuka

不揮発デバイスを用いたPVTバラつきフリーLSIの構成に関する研究

前の画像
次の画像
特徴・独自性
  • 電源を切ってもデータを記憶し続ける不揮発性デバイスを、メモリだけでなく、CPUなどの演算器やシステム全体の構成に積極的に活用する回路・システム構築方法が「不揮発性ロジック」です。本テーマでは、不揮発性デバイスに「回路構造情報」を記憶することで、製造プロセス(P)や電源電圧(V)、温度(T)などに起因する回路特性バラつきに対して頑健な回路を、少ないオーバーヘッドで実現できる回路構成を提案しています。
実用化イメージ

この成果は、今後微細化が益々進行する超微細LSI の高信頼化・高性能化に大いに寄与する技術であり、これに関連する分野で有意義な共同研究ができるものと考える。

研究者

電気通信研究所

羽生 貴弘  

Takahiro Hanyu

浮体式洋上風車・次世代航空機の非線形空力弾性・マルチボディ解析技術

前の画像
次の画像
概要

浮体式洋上風車・次世代航空機は軽量細長なブレード・翼を有するため,非線形空力弾性変形が避けられません.本研究では回転座標を一切使わない高効率な非線形空力弾性解析法を構築してきました.また,この非線形空力弾性変形は浮体の揺動や航空機の舵面駆動といったボディ同士の相対運動(マルチボディダイナミクス)と連成します.我々は支配方程式レベルからこの新たな連成問題に対する解析法の構築に取り組んでいます.

従来技術との比較

本研究で提案する非線形解析法を用いれば,従来の線形解析法では捉えることができない大変形に伴うフラッタ発生速度の低下や変形と飛行挙動の連成現象を扱うことができます.

特徴・独自性
  • 回転座標を一切使わない分かりやすい非線形構造解析法
  • 大変形に対応した高効率な非定常流体計算法
  • 浮体の揺動や航空機の舵面駆動といったボディ同士の相対運動を捉えるマルチボディダイナミクス
実用化イメージ

流体構造関連機械の挙動予測・空力弾性解析・構造解析・振動解析・空力解析
浮体式洋上風車
衛星航空機高アスペクト比翼旅客機
・ヘリコプター,ドローン
・ロボット,建設機械

研究者

大学院工学研究科

大塚 啓介  

Keisuke Otsuka

フレキシブル液晶ディスプレイの先進技術

前の画像
次の画像
特徴・独自性
  • ガラス基板をプラスチックフィルム基板で置き換えたフレキシブル液晶ディスプレイは、 曲がる・薄い・軽い・割れないなどの特質により、ディスプレイの収納性・携帯性を飛躍的に高め、新たな視聴形態やヒューマンインターフェースを創出します。そこで誰もが豊かな情報サービスを享受できるように、液晶や高分子などの機能性有機材料を用いて大画面・高画質のフレキシブルディスプレイを実現するための基盤研究に取り組んでいます。
実用化イメージ

これらの研究を進展させて、実用的なフレキシブルディスプレイと応用技術を開発するため、産業界との共同研究を希望します。

研究者

大学院工学研究科

藤掛 英夫  

Hideo Fujikake

プログラムの効率化および形式的検証

前の画像
次の画像
特徴・独自性
  • プログラムの効率の改善や形式的検証に関する研究を行っている。短期間で記述したプログラムは実行時間やメモリ使用量について非効率的であることが多いが、この問題に対し、プログラム変換によって機械的に改善する手法の開発に取り組んでいる。また、大規模なプログラムはその複雑さから予期せぬバグを含みやすいが、この問題に対しては、プログラム検証やモデル検査とよばれる数学的手法によって実行前に網羅的に検証する研究も進めている。
実用化イメージ

通常のソフトウェア開発では有限個のテストを通じて動作確認が行われるが、モデル検査器や定理証明支援系などのツールを用いることで、無限個の入力に対して動作が保証されたプログラムの作成を実現できる。

研究者

電気通信研究所

中野 圭介  

Keisuke Nakano

ブロックチェーンを活用した安全なクラウド・ストレージ技術および個人データ取引のための実用的スマートコントラクト技術の開発

前の画像
次の画像
特徴・独自性
  • 不特定多数のユーザ端末が供出する空きストレージとブロックチェーンを活用して、高度な安全性を実現するP2P型ストレージの構築技術を開発しています。構築ストレージは、中央管理サーバの問題に起因する保存データの大規模情報漏洩リスクも回避可能です。また、暗号通貨を報酬と利用料に使用し、全ユーザの公平なストレージ利用も実現します。さらに、実用的なデータ商取引を可能にするスマートコントラクト技術も開発しています。
実用化イメージ

ブロックチェーン技術を活用したスマートコントラクトやフィンテックなどのBitcoin2.0 型アプリケーション、モノインターネット(IoT)、医療情報データベース関連などの開発を行う企業との共同研究を希望します。

研究者

データ駆動科学・AI教育研究センター

酒井 正夫  

Masao Sakai

分子性有機物質の新電子物性開拓

前の画像
次の画像
特徴・独自性
  • 有機分子の集積によって構成されている分子性伝導体を中心に研究を進めています。分子で構成されている有機物質の特徴は“やわらかい”ことです。この特長から、近年、有機ELデバイスなどの軽量で“曲がる”エレクトロニクス材料として注目されています。当研究室では、このような分子性有機物質の基礎的物性( 金属- 超伝導- 絶縁体) の解明、新物性の開拓を目指しています。
  • 分子性有機物質は、無機物質と比べて“やわらかく”大きく広がった分子軌道や電荷の分布、また分子自身の持つ構造自由度などのために、電荷- スピン- 分子格子- 分子内結合の間にゆるやかで大きな自由度を有しています。このナノ分子サイズの“やわらかい”複合的自由度と強く関係している超伝導から絶縁体までの多彩な電子状態がバルクな物性として現れます。このような分子性物質の特長をフルに活かして、電子物性物理の重要で興味ある問題にチャレンジしています。 このような研究に興味のある企業への学術指導を行なう用意があります。
実用化イメージ

研究者

金属材料研究所

佐々木 孝彦  

Takahiko Sasaki

便中の腸内細菌で腎癌を診断できる!

前の画像
次の画像
概要

腎癌診断マーカー
https://www.t-technoarch.co.jp/data/anken_h/T22-355.html

従来技術との比較

特徴・独自性
  •  腎癌の診断においては、有効な血液マーカーがなく、超音波、CT、MRI等の画像診断が採用されている。これらの診断は健康診断 等において必須項目でないことが多く、自発的な検査が必要であるが、腎癌は自覚症状が出にくい為、発見が遅れるという問題が ある。
  •  本発明では腎癌患者の便から腎癌に特異的な属を特定した ことに基づく、新規腎癌マーカーに関するものである。
実用化イメージ

・便検査キット 
・マイクロバイオーム解析によるがん診断

研究者

大学院医学系研究科

伊藤 明宏  

Akihiro Ito

防災情報共有プラットフォームの開発と利活用による防災教育の高度化

前の画像
次の画像
特徴・独自性
  • 自然災害は地域ごとの自然条件/自然環境に大きく依存する。また、仮に同じ自然のハザードに曝されるとしても、その脅威を受ける社会の脆弱性に応じて災害の様相は大きく変動する。一方で、学校での防災教育では、学校周辺の地域性を十分に反映した教育内容には至っていない。地域素材の収集や教材化の困難さが主な理由である。そこで、地域のデジタル学習材を共有化するための情報共有プラットフォームの構築と利活用が、災害から子どもたちの命を守ることと、確かな学力形成の両立に貢献する。
実用化イメージ

学校での防災教育の普及・高度化に受けて、郷土・地域のデジタル学習材を共有化するための防災情報共有プラットフォームの開発等が考えられる。

研究者

災害科学国際研究所

佐藤 健  

Takeshi Sato

放射光可視化構造科学

特徴・独自性
  • 高輝度放射光やコヒーレント光源の特性を活かした高精度のX線散乱技術と、従来の電子密度の可視化だけでなく、原子や分子の相互作用を顕す静電ポテンシャルを精密に可視化できるデータ解析法を開発し、物質機能をデザインするプロトコルの創成を目指します。
実用化イメージ

電池材料、機能性材料、機能性ポリマーなどの研究開発において、構造可視化を必要とする産業界と共同研究が行えます。

研究者

国際放射光イノベーション・スマート研究センター

高田 昌樹  

Masaki Takata

放射光計測と高度情報処理の融合による物質機能可視化への展開

前の画像
次の画像
特徴・独自性
  • 放射光を光源とするイメージング・分光技術を駆使することで実用バルク材料全体の構造・元素・電子状態を多元的に可視化することができます。特に、放射光のコヒーレント成分を利活用したコヒーレント回折イメージングは、X 線領域で未踏であったナノスケールでの構造可視化を実現する次世代の可視化計測法として注目されています。また、近年の情報処理技術の発展に伴い、3次元空間に分布する元素・電子状態の情報から構造−機能相関に関する特徴的な情報を抽出することも可能になりつつあります。先進的X線光学技術を駆使した次世代の放射光イメージング・分光法の開拓を基軸とし、高度情報処理技術を活用することで、実用材料の機能を可視化する基盤を構築することを目指します。
実用化イメージ

研究者

国際放射光イノベーション・スマート研究センター

髙橋 幸生  

Yukio Takahashi

放射光による原子スケールの構造測定

前の画像
次の画像
概要

主に放射光の回折を用いて、高い精度で構造観測を行います。エピタキシャル薄膜や固液界面など,計測技術が確立していない測定対象を見るのが特徴です。

従来技術との比較

大強度の放射光と,情報科学を併用することで,標準的なX線構造解析の手法が適用できない物質の構造を明らかにします。

特徴・独自性
  • 周期性が完全でない物・表面や界面の構造解析を行う。
  • 有機半導体の表面構造緩和
  • 酸化物の界面構造
  • ある程度平滑な表面(AFMで見える程度,ステップ表面)があれば、その表面近傍の構造を非破壊・非接触で0.01nmの精度で決める事が可能
実用化イメージ

固液界面でのプロセスの進行過程を見るような応用が考えられます。 図1:測定セットアップ,図2:20ms露光でのX線反射率測定による固液界面構造観測例

研究者

大学院理学研究科

若林 裕助  

Yusuke Wakabayashi

ポジトロン断層法(PET)を用いた機能・分子イメージング研究

前の画像
次の画像
特徴・独自性
  • PETを用いた機能・分子イメージングでは、生体臓器(ヒトや動物の脳、心臓、筋肉など)の代謝、血流、微量物質貯留、情報伝達機能などを対象が生きたままの状態で体外から測定できます。この特徴を生かして、疾患の早期診断や抗ヒスタミン薬などの治療薬の作用・副作用研究、運動・代替医療による健康増進研究などを進めております。
実用化イメージ

以下のようなテーマの産学連携が可能です。㈰さまざまな薬物や飲食物の摂取前後の体内変化の評価、㈪運動、代替療法、瞑想などが心身に与える効果の評価、㈫認知症早期診断研究など。
基礎から臨床への橋渡し研究、臨床研究法対応も進めており、物理、化学・薬学、工学と連携した幅広い研究・開発の展開が可能です。

研究者

先端量子ビーム科学研究センター

田代 学  

Manabu Tashiro

ポジトロン標識プローブの創製と応用研究

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • サイクロトロンで製造されるポジトロン放出核種を薬学・医学へ応用する研究を行っています。生体画像化技術のPETイメージングで利用するポジトロン標識薬剤の分子設計理論と標識合成法に関する基礎研究を基盤とし、がんやアルツハイマー病のPET用画像診断薬剤の開発、ミトコンドリア標的プローブの創製と画像医学診断(心筋血流、褐色脂肪組織) への応用、PET による薬物動態解析、薬効薬理研究に取り組んでいます。
実用化イメージ

新規ポジトロン標識技術・装置の開発。がん、認知症、循環器疾患のPET画像診断プローブの製品化。創薬候補化合物のポジトロン標識化とPET 薬物動態評価(動物、ヒト)。新薬( 候補) の生体薬効薬理評価

研究者

先端量子ビーム科学研究センター

古本 祥三  

Shozo Furumoto

北極域先住民研究

前の画像
次の画像
特徴・独自性
  • 北極域とくにシベリア・アラスカなどの先住民の伝統文化の保全、気候変動の影響を文理融合のフィールドワークにより研究している。極地への適応という人類史的観点を踏まえてのアジア人類史に取り組むとともに、伝統文化の記録は文化財的価値をもつことからそのデジタル化と公開も行っている。北極圏で増加している洪水・森林火災・凍土融解などの事象がローカルな社会に及ぼす影響とその適応策を学際的に探求している。
実用化イメージ

北極域でのビジネスにおける企業の社会的責任(CSR)にあって、先住民の文化・社会の保全は重要な課題であり、またステークホルダーの一員である。現地情報や人権や多文化共生的観点からの助言が可能。

研究者

東北アジア研究センター

高倉 浩樹  

Hiroki Takakura

ホヤ殻由来セルロースナノファイバーの精製とエネルギー材料への応用

前の画像
次の画像
前の動画
次の動画
概要

ホヤはセルロースを産生する唯一の動物であり、ホヤ殻からタンパク等を除去し、解繊することにより、セルロースナノファイバー(CNF)を抽出することができます。我々はホヤ殻由来CNFが木質よりも結晶化度が高い点に注目し、その応用展開を行なっています。また、焼成すると高品質の炭素となることから、本材料を乾燥血粉と混ぜて焼成した「ナノ血炭触媒」の開発に成功し、触媒としての展開を行なっています。

従来技術との比較

ホヤ殻由来CNFは木質と比べ結晶化度が高く、長い繊維を提供することから、高強度で焼成すると高性能な炭素となります。

特徴・独自性
  • ホヤ殻由来CNFを簡便に大量精製できるプロセス開発と、その特徴(力学・工学・表面科学・電気的・熱的特性)を活かしたフィルム材料の開発、および炭化した材料の開発を一貫して行っている唯一の研究室です。
実用化イメージ

ホヤ殻由来CNF材料の提供やその炭化物、触媒などについて展開しています。材料提供や炭化プロセス、触媒の活用などについてご相談ください。

研究者

高等研究機構材料科学高等研究所

藪 浩  

Hiroshi Yabu

マイクロ・ナノマシニング技術を⽤いた低侵襲医療機器・ヘルスケア機器

前の画像
次の画像
特徴・独自性
  • 精密機械加工技術、MEMS(微小電気機械システム)技術などを用いて小さくとも様々な多機能を実現する新たな医療機器、ヘルスケア機器を開発しています。体内で検査治療を行う内視鏡やカテーテルを高機能化するほか、今までにない新たな医療機器を開発し、より精密で安全な検査・治療、新たな検査・治療の実現を目指します。また、体表に装着する薄く軽い高機能なデバイスにより、場所や時間の制約のない新たなヘルスケアを目指します。
実用化イメージ

基礎研究の他、実用化を目指し臨床医師および医療機器メーカーをはじめとした企業と協力して開発を進めています。また、大学から企業への橋渡しの目的で大学発ベンチャー企業を起業し共同した開発を進めています。

研究者

大学院医工学研究科

芳賀 洋一  

Yoichi Haga

マイクロ波を用いた高速配管探傷法

前の画像
次の画像
特徴・独自性
  • マイクロ波を用いて配管内面の広域一括探傷を行う技術の開発を行なっている。配管内部に数GHz 〜数十GHz のマイクロ波を入射し、その反射および透過の様子から、傷の位置及び大まかな性状を評価する。本技術においてはプローブを配管内部で移動させることは不要であり、またマイクロ波は配管内部を極めて低損失で伝播することから、従来技術に比してはるかに高速な検査が実現されるものと期待される。
実用化イメージ

全数検査が必要である、もしくは対象が長大・複雑等の理由により、従来技術を用いた検査が困難である配管に対して、本技術の有効性は特に高いと考えられる。

研究者

大学院工学研究科

橋爪 秀利  

Hidetoshi Hashizume

マイクロ波を利用した機能無機材料プロセッシング

前の画像
次の画像
特徴・独自性
  • マイクロ波は化学反応の駆動力としても注目されています。材料プロセッシングにおいては、単なる省エネルギー加熱としての特徴のみならず、反応促進効果や非平衡反応の進行が認められ、新素材を生み出す手法として期待できます。当研究室では、ミリ波からセンチ波に至るマイクロ波を駆使し、雰囲気制御を必要としない簡便な窒化物コーティング法や、サーメット焼結などの粉末冶金技術、金属ナノ粒子合成法を開発しています。
実用化イメージ

マイクロ波を利用した窒化物コーティング法は、オンサイトかつ短時間の成膜を可能にし、歯科インプラント材や宝飾品、切削工具等、チタン合金や各種セラミックス、硬質材料などに適用できます。

研究者

役員

滝澤 博胤  

Hirotsugu Takizawa

マイクロ流路内の相変化伝熱による高熱流束冷却機構

前の画像
次の画像
特徴・独自性
  • 発熱密度が増大しているシステムにおいて高性能な冷却を達成するために、微細な流路内の沸騰現象を制御し、熱輸送量を高める研究を行っています。沸騰現象の厳密な数値シミュレーションや一次元簡易沸騰シミュレーションを駆使し、理論的な予測に基づく冷却システムの設計を目指しています。
実用化イメージ

発熱密度が増大する情報通信システム用のデバイスや電気自動車等の電力制御システムの冷却が応用先として考えられます。また、理論解析を通じた既存の冷却システムの熱解析や最適化なども対象になります。

研究者

流体科学研究所

岡島 淳之介  

Junnosuke Okajima