登録されているキーワード 2942ワード(研究テーマ408件)

イオンチャネルタンパク質

バイオ材料とナノテクノロジーに基づくセンサ・電子デバイスの開発

前の画像
次の画像
特徴・独自性
  • エレクトロニクス分野で培われてきた技術を応用して、健康で安全な社会を発展させ、私たちの生活の質を高めるようなデバイスの開発研究を進めています。例えば、半導体のセンサインターフェイスとしての特性を、薬物検出やスクリーニングアッセイなどの生化学・医療用途に利用する研究や、生きた細胞を使って神経回路を作り上げ、脳の機能解析を支援する新規技術の開発を進めています。
実用化イメージ

シリコンチップ上に形成した人工細胞膜にイオンチャネルタンパク質を埋め込むと、極限まで規定された環境下でその機能や薬理応答を調べることができます。この技術は、新薬候補化合物の高感度な迅速検出法につながります。

研究者

電気通信研究所 人間・生体情報システム研究部門 ナノ・バイオ融合分子デバイス研究室

平野 愛弓  

Ayumi Hirano

イオン伝導体

固体イオニクス材料のエネルギー変換・貯蔵・利用技術への応用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 固体イオニクスを中心として高度なエネルギー変換を実現するための機能性材料の開発を行っている。燃料電池や蓄電池の高性能化のためには、高いイオン伝導度と化学的安定性を有するイオン導電体や混合導電体が必要とされ、これら材料を酸化物の欠陥化学や熱力学に基づき探索し、デバイスに応用している。これまでに酸素分離膜型水素製造システムや全固体リチウム電池を開発している。
実用化イメージ

酸化物イオン・電子混合導電体は小型水素製造システムや燃料電池の電極材料、酸素吸蔵放出材料、純酸素の工業的利用と関連が深く、リチウム伝導体は発火の危険性のない全固体電池への応用が期待される。

研究者

大学院工学研究科 知能デバイス材料学専攻 情報デバイス材料学講座(エネルギー情報材料学分野)

髙村 仁  

Hitoshi Takamura

イオンビーム

サイクロトロン加速器技術の開発と応用研究

前の画像
次の画像
特徴・独自性
  • サイクロトロン加速器に関連した技術開発および様々なイオンビームや中性子ビームを用いた基礎・応用研究を行っています。具体的には1)イオン源開発(特に重イオン源)、2) イオン光学設計(ビーム輸送技術)、3) 加速器関連の装置制御技術開発、4)高周波共振器の開発、5) イオン・ガンマ線・中性子等の放射線測定、6)イオンビーム・中性子ビームによる放射線耐性試験などです。
実用化イメージ

耐放射線に強い材料や回路を設計するための、陽子からXeに至るまでの重イオンビーム・中性子ビームなど多彩な量子ビームを用いた放射線耐性試験や、高速中性子ビームによるイメージング技術開発。

研究者

サイクロトロン・ラジオアイソトープセンター 加速器研究部

伊藤 正俊  

Masatoshi Itoh

イオン移動度分析

ナノ粒子・クラスターのイオンモビリティ質量分析とその応用

前の画像
次の画像
特徴・独自性
  • 高真空中での分子ビーム技術を用いて、今までにない気相小集団化学種(クラスター・ナノ粒子) の質量分析、イオン移動度分析、レーザー光誘起反応、二分子衝突反応の研究を、自作の真空装置を開発して行っている。
実用化イメージ

気相の微粒子の同定や構造決定が必要な材料・環境分野、質量分析やイオンモビリティが重要なプロテオミクスが関係するバイオ関連・製薬業界など

研究者

大学院理学研究科 化学専攻 物理化学講座(理論化学研究室)

美齊津 文典  

Fuminori Misaizu

イオンモビリティ

ナノ粒子・クラスターのイオンモビリティ質量分析とその応用

前の画像
次の画像
特徴・独自性
  • 高真空中での分子ビーム技術を用いて、今までにない気相小集団化学種(クラスター・ナノ粒子) の質量分析、イオン移動度分析、レーザー光誘起反応、二分子衝突反応の研究を、自作の真空装置を開発して行っている。
実用化イメージ

気相の微粒子の同定や構造決定が必要な材料・環境分野、質量分析やイオンモビリティが重要なプロテオミクスが関係するバイオ関連・製薬業界など

研究者

大学院理学研究科 化学専攻 物理化学講座(理論化学研究室)

美齊津 文典  

Fuminori Misaizu

育種

新規ハイブリッドライス育種基盤

前の画像
次の画像
特徴・独自性
  • 両親の良いところを併せ持った多収品種をつくる究極の育種法にハイブリッド品種(一代雑種品種)を作る技術がある。ハイブリッドライスを育種する基盤として、細胞質雄性不稔性と稔性回復システムが使われる。我々は東北大学オリジナルのCW型細胞質雄性不稔性イネの利用を検討し、その分子基盤を研究している。CW細胞質はこれまで不可能であったインディカ品種の雄性不稔化を実現できるので、高い利用価値が期待できる。
実用化イメージ

ハイブリッド品種のイネは、通常の品種と比較して30%ほどの収量増が期待され、その栽培面積は世界全体の13%を占めている。コメ産業の国際化を狙った日本独自の新規ハイブリッドライス育種基盤を提供できる。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(環境適応植物工学分野)

鳥山 欽哉  

Kinya Toriyama

簡便・低コスト・高感度な一塩基多型(SNP)分析法による品種判別、種同定、突然変異選抜

前の画像
次の画像
特徴・独自性
  • 独自に開発したdot-blot-SNP 分析法や、磁気ビーズ法により、遺伝子の一塩基の変異を多数の植物個体について低コストで分析できる。分析技術の熟練が必要ではあるが、一度に数千個体の遺伝子型分析を低コストで行うことを可能とする。
実用化イメージ

作物育種の現場でのDNA分析による遺伝子型判定や突然変異体の選抜、さらに、種子の純度検定、品種の同定、異品種混入の同定等に利用することが出来る。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(植物遺伝育種学分野)

北柴 大泰  

Hiroyasu Kitashiba

意見/情報分析

ビッグデータの意味解析を可能にする自然言語処理技術

前の画像
次の画像
特徴・独自性
  • 膨大な言語データを意味的に解析し必要な情報・知識を抽出する技術、抽出した情報・知識を分類・比較・要約する技術、それらを可能にする世界最速の仮説推論技術など、先進的な自然言語処理技術を研究開発しています。また、これら基盤技術をウェブやソーシャルメディアなどのビッグデータに適用し、大規模な情報・知識マイニングや信頼性の検証支援、耐災害情報処理などに応用する実践的研究も展開しています。
実用化イメージ

言語意味解析に基づく高度なテキストマイニングによる市場動向調査や技術動向調査、隠れたニーズやリスクの発見、社内文書の構造化・組織化による知識管理支援、対話システムなど、多様な分野・業種との連携が可能です。

研究者

言語AI研究センター

乾 健太郎  

Kentaro Inui

維持管理

意識

脳を知れば人間がわかる

前の画像
次の画像
特徴・独自性
  • 人間らしい精神と行動を実現する脳の仕組みを、脳機能計測(図1)と生理・行動計測を駆使して明らかにしている。心の仕組みは、自己と外界との関係性の認知処理という視点から、3つの脳領域群(図2)で処理される「出力とフィードバック入力の関係性」(図3)として整理される:身体的自己(身体と外界の関係:A)、社会的自他関係(自己と他者との社会的関係:B)、自己の社会的価値(C)。
実用化イメージ

心の働きを脳活動から推測する技術の開発や、人間らしい判断を可能にするアルゴリズムの開発を通じて、製品開発・評価に応用できる可能性がある。

研究者

加齢医学研究所 脳科学研究部門 人間脳科学研究分野

杉浦 元亮  

Motoaki Sugiura

意思決定

医療における意思決定への行動経済学的アプローチ

前の画像
次の画像
特徴・独自性
  • 医療場面での意思決定において、患者の意向の尊重という名の下に、選択を完全に患者に任せるようなコミュニケーションが少なからず取られている。しかし、意思決定を難しく感じる患者も多く、医学的な観点からは不合理と思われるような選択をするケースも生じる。本研究は、行動経済学のアプローチを医療場面に応用し、患者のバイアスや感情を考慮したより適切な医療コミュニケーションのあり方を探ることを目的として進めている。
実用化イメージ

当該領域は近年アプリ等の活用も進んでいるため、開発を手がける企業との連携の可能性がある。また、治療選択のみならず検診受診やワクチン接種等の行動も扱っているため、行動変容を目指したい自治体等との連携の可能性もある。

研究者

大学院教育学研究科 総合教育科学専攻 教育心理学講座(臨床心理学)

吉田 沙蘭  

Saran Yoshida

異種材料

異種材料接合における新たな界面設計・制御

前の画像
次の画像
特徴・独自性
  • 異種材料接合は、次世代の構造物やデバイスの製造において重要な技術であるが、これまでは、接合界面での過度な素材間の反応により特性が劣化するため、良好な接合継手を得ることは困難であった。当研究室では、素材間の過度な反応を抑制し得る摩擦攪拌接合や超音波接合などの固相接合技術を駆使し、また接合時の界面現象解明を通じて、特性を劣化させない界面を、意図的に作り込む新たな接合技術の開発を目指している。
実用化イメージ

次世代の輸送機器や電力設備などでは、鋼、アルミニウム合金、チタン合金、銅など各種金属同士の接合に限らず、金属と熱可塑性樹脂との接合も含めた異種材料接合の実機適用を目指した企業等との共同研究を希望する。

研究者

大学院工学研究科

佐藤 裕  

Yutaka Sato

異種タンパク質

麹菌や酵母を宿主とした有用タンパク質生産システムの開発

前の画像
次の画像
特徴・独自性
  • 麹菌や酵母は安全性が高く高等動植物由来の有用タンパク質の生産宿主として期待されている。麹菌はタンパク質分泌能が高く有望な宿主であるが、自身が生産するプロテアーゼにより目的のタンパク質が分解されてしまうため、プロテアーゼ生産に関わる転写因子遺伝子の破壊株を作製し、異種タンパク質の分解を抑えることに成功した。また、異種遺伝子のコドン使用頻度を麹菌に最適化することで転写産物の安定性を飛躍的に高めることができ、目的とするタンパク質の生産性向上を可能にした。これらを組み合わせることによって有用タンパク質の生産量のさらなる増加が可能になるものと期待される。
実用化イメージ

麹菌や酵母を宿主とした医薬品用タンパク質製造や産業用酵素生産への応用が期待でき、それらの製造生産に関わる企業との産学連携の可能性がある。

研究者

大学院農学研究科 農芸化学専攻 発酵微生物学寄附講座

五味 勝也  

Katsuya Gomi

位相

X線位相イメージングによる高感度非破壊検査装置の開発

前の画像
次の画像
特徴・独自性
  • 通常のX線透視撮影は軽元素からなる高分子材料などの低密度材料に対して明瞭なコントラストを生成しない。しかし、X線が物質を透過するとき、わずかに屈折により曲げられることを検出・画像化することで、そのような物質に対する感度が大幅に改善される。X線透過格子を用いるX線Talbot 干渉計あるいはX線Talbot-Lau干渉計によりこれが実験室で実施できるようになった。高感度三次元観察を可能とするX線位相CT も実現している。
実用化イメージ

工業製品検査や保安目的のX線非破壊検査を、従来法では適応が難しかった対象に拡張できる。X線マイクロCT装置への位相コントラストモード付加、生産ラインでのX線検査装置の高度化などが開発目標となる。

研究者

多元物質科学研究所 計測研究部門 量子ビーム計測研究分野

百生 敦  

Atsushi Momose

X線位相イメージングによる高感度医用診断装置の開発

前の画像
次の画像
特徴・独自性
  • 通常のX線透視撮影は生体軟組織などのX線をあまり減衰させない構造に対して明瞭なコントラストを生成しない。X線が物質を透過するとき、わずかに屈折により曲げられる。通常のX線透視撮影では、X線は直進していると近似しているが、この屈折を検出・画像化することで、軟組織に対する感度が大幅に改善される。このような撮影を、X線透過格子を用いるX線Talbot 干渉計あるいはX線Talbot-Lau干渉計により実現している。
実用化イメージ

すでに、軟骨描出能を使ったリウマチ診断、および、乳がん診断(マンモグラフィ)への適用を目的とした医用機器開発を進めている。他の医用用途が開拓できれば、新たな産学連携が構築できると期待している。

研究者

多元物質科学研究所 計測研究部門 量子ビーム計測研究分野

百生 敦  

Atsushi Momose

位相回復

放射光計測と高度情報処理の融合による物質機能可視化への展開

前の画像
次の画像
特徴・独自性
  • 放射光を光源とするイメージング・分光技術を駆使することで実用バルク材料全体の構造・元素・電子状態を多元的に可視化することができます。特に、放射光のコヒーレント成分を利活用したコヒーレント回折イメージングは、X 線領域で未踏であったナノスケールでの構造可視化を実現する次世代の可視化計測法として注目されています。また、近年の情報処理技術の発展に伴い、3次元空間に分布する元素・電子状態の情報から構造−機能相関に関する特徴的な情報を抽出することも可能になりつつあります。先進的X線光学技術を駆使した次世代の放射光イメージング・分光法の開拓を基軸とし、高度情報処理技術を活用することで、実用材料の機能を可視化する基盤を構築することを目指します。
実用化イメージ

研究者

国際放射光イノベーション・スマート研究センター 横幹研究部門 データ可視化スマートラボ

髙橋 幸生  

Yukio Takahashi

一塩基多型(SNP)

簡便・低コスト・高感度な一塩基多型(SNP)分析法による品種判別、種同定、突然変異選抜

前の画像
次の画像
特徴・独自性
  • 独自に開発したdot-blot-SNP 分析法や、磁気ビーズ法により、遺伝子の一塩基の変異を多数の植物個体について低コストで分析できる。分析技術の熟練が必要ではあるが、一度に数千個体の遺伝子型分析を低コストで行うことを可能とする。
実用化イメージ

作物育種の現場でのDNA分析による遺伝子型判定や突然変異体の選抜、さらに、種子の純度検定、品種の同定、異品種混入の同定等に利用することが出来る。

研究者

大学院農学研究科 生物生産科学専攻 植物生命科学講座(植物遺伝育種学分野)

北柴 大泰  

Hiroyasu Kitashiba

胃腸炎ウイルス

胃腸炎ウイルス吸着性腸内細菌の活用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 本研究室では、ノロウイルスやロタウイルスなど、水を介して感染が拡大する胃腸炎ウイルスを特異的に捕捉する血液型決定抗原様物質陽性細菌が存在することを世界で初めて証明しました。この腸内細菌は、ヒト体内及び環境中で、胃腸炎ウイルスの生態に大きな影響を与えているものと考えられています。
実用化イメージ

胃腸炎ウイルス吸着性腸内細菌は細胞へのウイルス感染効率に影響を与えることから、胃腸炎ウイルス吸着性腸内細菌および産生される血液型決定抗原様物質は、プロバイオティクスにおける活用が期待できます。

研究者

大学院工学研究科 土木工学専攻 水環境学講座(環境水質工学分野)

佐野 大輔  

Daisuke Sano

イットリウム鉄ガーネット

new新規磁性ガーネット膜の開発

概要

磁性ガーネットの作製を行っています。磁性ガーネットは、磁性を持ったガーネット構造を持った材料のことを指します。磁性ガーネットの中でも、特に、YIG(イットリウム鉄ガーネット)のYサイトを、CeやBiといった希土類材料で置換し、磁気光学効果を増大した材料を作製しています。作製方法は、イオンビームスパッタ法を用いており、緻密な膜の作製が可能です。エピタキシャルな膜作製が可能です。

従来技術との比較

エピタキシャルに磁性ガーネットを作製するには、900度程度に、基板加熱を行いながら、成膜を行う必要があるため、専用の装置を必要とします。

特徴・独自性
  • 磁性ガーネット膜の作製が可能です。磁性ガーネットは、YIG(yttrium iron garnet, Y3Fe5O12)を基本組成とし、このYのサイトに、他の元素を置換することで、磁気光学効果が大きくなったり、高周波(スピン波)の応答が変わったりします。私は、このYサイトに、Ce、Bi、Dy、などの希土類を置換することで、大きな磁気光学効果を持つ材料を作製しています。これを用いたデバイス応用についても取り組んでいます。
  • さらに、磁気異方性を制御することが、デバイス応用上重要となりますが、これを、イオンビームスパッタ法の場合は、成膜中に、調整することが可能になるため、応用上有利です。さらに、磁気ドメインをもつ膜にしたり、磁気光学効果を大きくしたりすることが可能で、デバイスに合わせた材料の設計と作製と試作が可能です。
実用化イメージ

・磁性ガーネットを利用したデバイスプロトタイプの性能を向上し、実用化製品の開発研究。
・磁性ガーネットを利用した磁気光学あるいはスピン波に関する基礎的な共同研究。

研究者

電気通信研究所 人間・生体情報システム研究部門 生体電磁情報研究室

後藤 太一  

Taichi Goto

遺伝子

脳MRIデータベースを用いた発達、加齢に関する研究

前の画像
次の画像
特徴・独自性
  • 遺伝要因、生活習慣がそれぞれ脳発達、加齢にどのような影響を与えるかを明らかにすることで、生涯健康脳の維持を目指す。これが明らかになることで、ある遺伝的素因を持つ個々人がどのような生活習慣を送ると、生涯健康脳が維持できるかが明らかになり、認知症等、種々の疾患の一次予防、二次予防が可能になる。更に、独自性は世界でも屈指の大規模脳MRI データベースを用いる点にある。
実用化イメージ

運動、睡眠、食品、楽器、その他の趣味に関わる業種といった、種々の生活習慣に関わる製品を開発している業界が該当すると考えられる。

研究者

スマート・エイジング学際重点研究センター

瀧 靖之  

Yasuyuki Taki