登録されているキーワード 3342ワード(研究テーマ416件)

安定性

表面をデコボコにして流れをきれいに保つデバイス

前の画像
次の画像
概要

 最適に設計されたデコボコ(SRE)を物体表面に加工することで空気や水による摩擦抵抗を低減する技術です。巡航状態の航空機のように、ほぼ一定速度の流れの中におかれた物体に適用が可能であり、流れと鋭⾓をなす翼や円柱、回転円盤や円錐などに応用できます。流れの安定性解析・CFD解析を用いた高精度な設計と、物体表面の微細加工技術(数百マイクロスケール)が必要となります。

従来技術との比較

すでに乱流状態になった境界層に対してはサメ肌加工やリブレット加工などが抵抗低減技術として知られてますが、本技術は乱流状態への遷移自体を抑制して層流に保つことができます。

特徴・独自性
  • 物体周りの流れ(境界層)が乱流になるのを抑制し、摩擦抵抗を低減する効果があります。
  • 物体表面に微細な凹凸を付加的に加工するだけなので、電力を消費せず、既存の装置の設計変更を必要としない制御デバイスです。
  • 想定される流れ場に合わせて最適に設計すれば、その環境下で空力性能が向上します。
実用化イメージ

民間航空機の主翼などに実装すれば、空気摩擦抵抗が低減し、低燃費化・CO2排出削減への貢献が期待できます。

研究者

流体科学研究所

廣田 真  

Makoto Hirota

安定発現株

指定難病を治療する薬剤候補の探索

概要

電気生理学的手法と効率的かつ段階的なスクリーニング法を組み合わせたハイスループット電位依存性ナトリウムチャネル(Voltage-gated sodium channels, Nav)阻害剤スクリーニング法を確立した。本事業では化合物ライブラリーや生物材料を提供して頂き、神経障害性疼痛や各種心臓病等を治療するNav阻害剤を探索する。

従来技術との比較

Navの挙動観察用に開発されたハイスループット系はNav電流を直接、観測していないため、偽陽性反応が生じる欠点をもつ。本事業ではNav電流を直接、観測でき、Nav阻害作用の有無を正確に評価できる電気生理学的手法に対してハイスループット性を保持させた革新的な戦略を適用する。そのため、見い出された物質そのものが薬剤候補となると考えている。

特徴・独自性
  • 電気生理学的手法は0.01秒程度の超短時間で開閉し、1細胞あたり僅か10-9分の1アンペア(1 nA)程度の電位依存ナトリウムチャネル(Nav)透過電流を観測する戦略です。高い専門性を必要とする電気生理学的手法は阻害作用の有無を正確に評価でき、薬剤候補を探索する手段として独自性が高い手法です。本手法に、4段階で構成される効率的かつ段階的なスクリーニング法を組み合わせます。化合物ライブラリーをグループに分けて実施する第1段階、陽性グループ中の化合物を連続投与する第2段階では、複数のNav サブタイプを安定発現し、ハイスループット性に秀でたNeuro2A 細胞を用います。続いて、単一Nav サブタイプを発現させたHEK293T 細胞に単一化合物を投与する第3段階、電気生理学的に[静止―活性化―不活性化]状態にある各Navを抽出し、単一化合物によりいずれの状態が阻害されるかを調べる第4段階を経て完了します。この特徴的な最終段階は作用機序解明を実現する生理活性測定戦略と位置付けられます。
実用化イメージ

先天性筋無力症候群、非ジストロフィー性ミオトニー症候群、ドラべ症候群など患者数が少なく収益を得られにくい指定難病や心臓疾患の治療に貢献します。

研究者

大学院農学研究科

此木 敬一  

Keiichi Konoki

アンテナ

ミリ波パッシブイメージング装置の開発と実用化

前の画像
次の画像
特徴・独自性
  • 等の背後の危険物が放射するミリ波を受信し、これをパッシブに完全無侵襲で検知することが可能であり、これを実現するミリ波パッシブイメージング装置の開発を進めてきました。ミリ波帯は波長が1 mm 〜 10 mmの電磁波であり、
  • ミリ波を用いる利点として、テラヘルツ波や赤外線に比べて画像の空間分解能が低いものの衣服等の透過率が高いこと、物体から放射された微弱なミリ波を増幅するための低雑音増幅器が存在し、電磁波を照射しないパッシブ方式が実現できる周波数帯であることが挙げられます。
  • 現在、装置は主に空港・港湾等の水際で使用するセキュリティー機器として企業との共同研究により開発を進めていますが、火災・警察・医療等への応用も検討したいと考えています。今後ミリ波パッシブイメージング技術の応用分野はさらに広がるものと考えており、産業界で応用を検討したい企業・団体との共同研究を希望します。
実用化イメージ

研究者

大学院工学研究科

佐藤 弘康  

Hiroyasu Sato

型の線幅よりも微細な金属配線パターンの作製が可能!

概要

湿式エッチングでサブマイクロ線幅の金属配線付き基板を作製する方法
https://www.t-technoarch.co.jp/data/anken/T11-050.pdf

従来技術との比較

従来のフォトレジストマスクをウエットエッチングに用いた場合、金属配線幅は約10μmが下限でした。エッチング耐性に優れたレジストの熱ナノインプリント成形で、線幅0.1μmの金属配線の作製に成功しました。

特徴・独自性
  • 金・銀・銅・クロムなどのウエットエッチング加工が可能です
  • 金属と有機レジストを化学結合を介してつなぐ分子接着剤を用いています
  • サイドエッチングによる狭線化が可能なため、マイクロサイズの金属線幅をサブミクロンサイズまで縮小することが可能です
実用化イメージ

透明導電パネル・磁気シールドフィルム・帯電防止シートなどへの利用が考えられます。ウエットエッチング方式での加工なので、ロールtoロール製法にも対応が期待できます。

研究者

多元物質科学研究所

中川 勝  

Masaru Nakagawa

レクテナ発電による中・遠赤外光の電力変換

前の画像
次の画像
概要

無線送電技術であるレクテナを用いた赤外光の電力変換技術です。赤外光を電磁波としてアンテナで吸収して生じる交流電場をダイオードで整流することで電力へと変換します。アンテナの設計次第であらゆる波長の赤外光を電力変換できるため、中・遠赤外光が主体となる300℃以下の物体からの熱ふく射も電力変換可能です。

従来技術との比較

従来の熱発電技術とは全く異なる方法により電力変換を行います。熱ふく射を電力変換するため熱源と素子が接触する必要が無く、耐久性やデバイス設計自由度が高いです。電力変換可能な波長域は材料に依らずアンテナ設計次第で自由に制御することができます。

特徴・独自性
  • 赤外光の波動性に基づいた電力変換を行うため、材料物性に依らず感度波長を自由に制御できることが最大の特徴です。全ての有限温度物体は熱ふく射を放出するため、原理的にあらゆる温度域の熱源から電力を抽出することが可能となります。
  • レクテナ発電はマイクロ波を用いた無線送電技術として既に確立されていますが、赤外光は電磁波の周波数が非常に高いため(1013Hz~)、高速応答するダイオードの開発とエネルギー損失のないデバイス化が課題です。
  • 高速応答ダイオードとしては、金属ナノ粒子を用いたトンネルダイオード技術を新たに提案し、高性能化を達成しています。エネルギー損失のないデバイスとしては、空洞共振器構造に基づくデバイスを新たに提案し、可視~中赤外光の発電を実現しています。
実用化イメージ

あらゆる環境で発電が可能であり薄膜化も可能であるため、自立型センサ等の電源応用が期待できます。

研究者

大学院工学研究科

清水 信  

Makoto Shimizu

アンモニア

高圧ガスタービン環境における燃焼評価とカーボンニュートラル燃料の燃焼技術開発

前の画像
次の画像
概要

 

従来技術との比較

 

特徴・独自性
  • 燃焼は、温度、濃度、速度、高速化学反応といった多次元のダイナミックスが複合した複雑な過程です。当研究室は、高圧ガスタービン環境を実現できる世界的にも希な高圧燃焼試験装置を有し、高温高圧下の燃焼実験ならびにレーザー分光計測に独自性があります。航空宇宙推進系のみならず各種高圧化学反応炉の設計技術と安全評価技術、新燃料の燃焼技術、さらには高圧下の液体微粒化技術の研究開発にも取り組んでいます。
実用化イメージ

航空宇宙、自動車、電力、工業炉、化学プラント業界における、燃焼評価、アンモニア燃焼現象の評価、多様な燃料に対するガスタービン燃焼と評価、高圧噴霧生成と制御、高圧下のレーザー燃焼診断等に関する連携が可能です。

研究者

流体科学研究所

早川 晃弘  

Akihiro Hayakawa

eラーニング

対話型教授システムIMPRESSIONによる次世代教育環境

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 『IMPRESSION』は、対面教育、遠隔教育の双方において各種マルチメディア教材を活用した対話型インストラクションのための教授システムです。この『IMPRESSION』では、講師と学習者との対話に着目した成長型教授設計プロセスモデルであるダブルループモデルに基づき、実際の学習者に応じたインストラクションの設計、実施、評価、改善を可能とし、これにより、効果的で魅力的な教育を実現します。
実用化イメージ

一般的な学校教育現場における高度なメディア活用教育のほか、遠隔地の社員を対象とした研修等、各種教育の実施環境、および、そのためのデザインツールとして活用することができます。

研究者

データ駆動科学・AI教育研究センター

三石 大  

Takashi Mitsuishi

硫黄酸化物

気相化学種の同時定量技術・ソフトウェア

前の画像
次の画像
概要

フーリエ変換赤外線分光法 (FT-IR) を用いて、活性酸素・窒素種 (オゾン O3、 過酸化水素 H2O2、 窒素酸化物 (一酸化窒素/二酸化窒素/五酸化二窒素/亜酸化窒素) NOx、 亜硝酸/硝酸 HNOx)や硫黄酸化物 SOx、 一酸化炭素/二酸化炭素 COx等の気相化学種を同時に定量する技術を開発しています。

従来技術との比較

標準ガスを用いた校正曲線からの密度定量は、標準ガスとして入手できない化学種に対応できない等の問題を抱えていました。
本技術は、 標準ガスの校正をせずに、20種を超える化学種の同時定量を可能にします。

特徴・独自性
  • 手軽に1クリックで同時密度定量可能なソフトウェア
  • 化学種の吸収断面積データベースを使用
  • 様々な装置関数や測定条件に対応可能
実用化イメージ

気相化学種を密度定量したいという様々なニーズに対して、直接貢献できる。

研究者

大学院工学研究科

佐々木 渉太  

Shota Sasaki

硫黄プラズマ

新硫化技術及び同技術で作製するn型SnS薄膜と太陽電池

前の画像
次の画像
概要

新硫化技術及び同技術で作製するn型SnS薄膜と太陽電池
https://www.t-technoarch.co.jp/data/anken_h/T20-154.html

従来技術との比較

特徴・独自性
  • SnS(硫化スズ)を用いた薄膜太陽電池は以下特徴がある
  • ①Cd、Teのような有害元素を含まない
  • ②安価な元素(Sn及びS)のみで構成される(原料コストはシリコン系の1/7、CdTeの1/2、CIGSの1/14)
  • ③ 2-3μmの厚さで光吸収が可能(シリコン系~500μm)
  • ④ホモp-n接合で変換効率25.3%が実現できると報告されている
  • しかしながら高効率のホモp-n接合を有するSnS太陽電池を実現するためには、技術的に作製出来なかったn型のSnS薄膜の実現が必要であった。本発明は今まで作製出来なかったn型SnS薄膜を硫黄プラズマを用いた新規硫化技術を用いて世界で初めて実現した。
  • このn型SnS薄膜を用いることで今後ホモ接合のSnS太陽電池を実現することが期待される。
実用化イメージ

・太陽電池、フォトディテクター
・新規硫化技術を用いた硫化物の作成(次ページ)

研究者

多元物質科学研究所

鈴木 一誓  

Issei Suzuki

イオン液体

固液界面真空プロセスの開発とその応用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 様々な物質の液体状態を、高真空環境下で安定化させ、そのマイクロ/ナノレベルの成形技術や診断技術の開発,また,物性測定による新現象の発見,およびそのプロセス応用に取り組んでいる。特に、膜厚が数nmのイオン液体膜の作製や単結晶品質のSiCなどの無機薄膜の高速VLS成長、イオン液体を介した有機半導体、高分子薄膜・結晶材料のプロセスは,世界的にも類を見ない独自技術である。
実用化イメージ

wet系プロセスの利点を真空プロセスに取り入れた次世代の半導体プロセスへの応用開発、有機半導体の新しい精製技術の開発,イオン液体を介した蒸着法による再結晶が困難な有機化合物の単結晶の試作など。

研究者

大学院工学研究科

松本 祐司  

Yuji Matsumoto

リチウムイオン内包フラーレンを用いた二次電池の開発

前の画像
次の画像
特徴・独自性
  • リチウムイオン内包フラーレン(Li+@C60)を用いた二次電池を開発しています。その中でもLi+@C60をカチオンとしたイオン液体を電気二重層キャパシタ(EDLC)の電解質として用いた[Li+@C60]・EDLC は、広い温度域で高い運動性を示す球形のC60殻内に安定に閉じ込めたLi+を用いるため、イオン液体中でも高密度で高速蓄電が可能で、高い安全性が確認されています。
実用化イメージ

宇宙などの極限環境下で使用可能な二次電池としての応用が期待されます。さらに、Li+@C60を用いた全固体型二次電池への展開も可能で、飛躍的な蓄電密度の向上が達成できます。

研究者

大学院理学研究科

權 垠相  

Eunsang Kwon

イオン光学

サイクロトロン加速器技術の開発と応用研究

前の画像
次の画像
特徴・独自性
  • サイクロトロン加速器に関連した技術開発および様々なイオンビームや中性子ビームを用いた基礎・応用研究を行っています。具体的には1)イオン源開発(特に重イオン源)、2) イオン光学設計(ビーム輸送技術)、3) 加速器関連の装置制御技術開発、4)高周波共振器の開発、5) イオン・ガンマ線・中性子等の放射線測定、6)イオンビーム・中性子ビームによる放射線耐性試験などです。
実用化イメージ

耐放射線に強い材料や回路を設計するための、陽子からXeに至るまでの重イオンビーム・中性子ビームなど多彩な量子ビームを用いた放射線耐性試験や、高速中性子ビームによるイメージング技術開発。

研究者

先端量子ビーム科学研究センター

伊藤 正俊  

Masatoshi Itoh

イオン交換樹脂

スーパービタミンEトコトリエノールの高効率回収技術

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 本技術は、
  • 1. 分子蒸留を一切行わないため熱安定性の低いトコトリエノールを分解なしに100% 回収できる、ビタミンE 類(トコトリエノールとトコフェロール)を選択的に樹脂に保持できるため不純物混入量が少なく高純度で回収できる、
  • 2. ビタミンE類の回収と同時に遊離脂肪酸とトリグリセリドを何れも転化率100% で脂肪酸エステルに変換できる、
  • 3. 樹脂充填層に溶液を供給するだけの簡便な操作で連続操作が可能である、という特長を持ちます。
実用化イメージ

抗癌作用が注目されているトコトリエノールを医薬品や食品添加物として利用したい企業、原料ビタミンE濃度が低くても選択的に完全回収できるため、スカム油からのビタミンE回収率向上を目指す企業との連携が可能です。

研究者

大学院工学研究科

北川 尚美  

Naomi Kitakawa

バイオマス由来の潜熱蓄熱材

前の画像
次の画像
概要

バイオマス由来の潜熱蓄熱材
https://www.t-technoarch.co.jp/data/anken_h/T19-339.html

従来技術との比較

特徴・独自性
  •  潜熱蓄熱材(PCM:Phase Change Material)を内包したマイクロカプセルは潜熱蓄熱材として建物内外壁や衣料品等に利用されている。一方、PCMとして使用される石油資源由来のパラフィンや高価な脂肪酸エステルに替わる安価で環境調和型のPCMが求められている。本発明は、パーム油等に含まれる脂肪酸や油脂をイオン交換樹脂触媒の存在下でアルコールと反応させることにより、PCMとして有用な脂肪酸エステル混合物を製造する方法を提供する。 
実用化イメージ

・原料の種類や混合比によって熱化学特性を制御できる
・再生可能資源由来の材料の安価な製造が期待される。

研究者

大学院工学研究科

廣森 浩祐  

Kousuke Hiromori

イオンチャネル

バイオスティミュラント(植物調節 剤・農薬)の探索

前の画像
次の画像
概要

農薬の代替であるバイオスティミュラントの開発を行います。植物の活性を調節するイオン輸送体などを標的分子とする化合物を探索します。植物に、耐乾燥性、耐塩性、光合成機能の向上、成長調節機能の人為的な強化を目指しています。

従来技術との比較

化学、農薬、食品、資材業界の専門家の協力と連携によって、より高性能で田畑で効果のあるバイオスティミュラントや天然の農薬の基盤化合物を探索します。

特徴・独自性
  • 農薬の代替であるバイオスティミュラントの開発を行う.植物の活性を調節するイオン輸送体などを標的分子とする化合物を探索する.植物に,耐乾燥性,耐塩性,光合成機能の向上,成長調節機能の人為的な強化をめざす.
実用化イメージ

候補化合物を,化学,農薬,食品,資材業界の専門家の協力と連携によって,より高性能で田畑で効果のあるバイオスティミュラントや天然の農薬として発展させることができればと思っています.

研究者

大学院工学研究科

魚住 信之  

Nobuyuki Uozumi

イオンチャネルタンパク質

バイオ材料とナノテクノロジーに基づくセンサ・電子デバイスの開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • エレクトロニクス分野で培われてきた技術を応用して、健康で安全な社会を発展させ、私たちの生活の質を高めるようなデバイスの開発研究を進めています。例えば、半導体のセンサインターフェイスとしての特性を、薬物検出やスクリーニングアッセイなどの生化学・医療用途に利用する研究や、生きた細胞を使って神経回路を作り上げ、脳の機能解析を支援する新規技術の開発を進めています。
実用化イメージ

シリコンチップ上に形成した人工細胞膜にイオンチャネルタンパク質を埋め込むと、極限まで規定された環境下でその機能や薬理応答を調べることができます。この技術は、新薬候補化合物の高感度な迅速検出法につながります。

研究者

電気通信研究所

平野 愛弓  

Ayumi Hirano

イオン伝導体

固体イオニクス材料のエネルギー変換・貯蔵・利用技術への応用

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 固体イオニクスを中心として高度なエネルギー変換を実現するための機能性材料の開発を行っている。燃料電池や蓄電池の高性能化のためには、高いイオン伝導度と化学的安定性を有するイオン導電体や混合導電体が必要とされ、これら材料を酸化物の欠陥化学や熱力学に基づき探索し、デバイスに応用している。これまでに酸素分離膜型水素製造システムや全固体リチウム電池を開発している。
実用化イメージ

酸化物イオン・電子混合導電体は小型水素製造システムや燃料電池の電極材料、酸素吸蔵放出材料、純酸素の工業的利用と関連が深く、リチウム伝導体は発火の危険性のない全固体電池への応用が期待される。

研究者

大学院工学研究科

髙村 仁  

Hitoshi Takamura

イオンビーム

サイクロトロン加速器技術の開発と応用研究

前の画像
次の画像
特徴・独自性
  • サイクロトロン加速器に関連した技術開発および様々なイオンビームや中性子ビームを用いた基礎・応用研究を行っています。具体的には1)イオン源開発(特に重イオン源)、2) イオン光学設計(ビーム輸送技術)、3) 加速器関連の装置制御技術開発、4)高周波共振器の開発、5) イオン・ガンマ線・中性子等の放射線測定、6)イオンビーム・中性子ビームによる放射線耐性試験などです。
実用化イメージ

耐放射線に強い材料や回路を設計するための、陽子からXeに至るまでの重イオンビーム・中性子ビームなど多彩な量子ビームを用いた放射線耐性試験や、高速中性子ビームによるイメージング技術開発。

研究者

先端量子ビーム科学研究センター

伊藤 正俊  

Masatoshi Itoh

イオンビームスパッタリング

多層膜光学素子の開発とテイラーメイドX線光学素子の開拓

概要

X線は進行方向を変える(レンズを作る)ことが難しく、ミラーで反射させることで集光させます。このとき、一層の厚さが数nmの極薄多層膜を曲面に沿って精密に膜厚制御されたミラーを用いると、直入射で高反射率が得られます。この原理を用いることで、実験室の光源でも明るく解像度の高い軟X線顕微鏡が実現できます。

従来技術との比較

軟X線の反射波長は多層膜の層厚と入射角に依存します。結像ミラーでは曲面に沿って入射角が変わるため、精密な層厚制御なしでは反射する軟X線の波長が変わり、明るい顕微鏡が実現できません。

特徴・独自性
  • 速度可変シャッター機構を使ったイオンビームスパッタリング成膜による精密膜厚分布制御成膜法
  • 4枚の直入射ミラーで反射波長を一致させた実験室光源を用いた軟X線顕微鏡
  • 精密膜厚分布制御成膜法により、基板面内で反射波長が連続的に変化する硬X線ポリクロメーターの実現(放射光施設内の白色ビームラインでの応用)
実用化イメージ

収差が小さく明るい軟X線顕微鏡を実現できます。生物細胞の内部構造の観察や軟X線露光装置に用いるマスクの検査等の用途への適用が期待されます。

研究者

国際放射光イノベーション・スマート研究センター

羽多野 忠  

Tadashi Hatano

イオン移動度分析

ナノ粒子・クラスターのイオンモビリティ質量分析とその応用

前の画像
次の画像
特徴・独自性
  • 高真空中での分子ビーム技術を用いて、今までにない気相小集団化学種(クラスター・ナノ粒子) の質量分析、イオン移動度分析、レーザー光誘起反応、二分子衝突反応の研究を、自作の真空装置を開発して行っている。
実用化イメージ

気相の微粒子の同定や構造決定が必要な材料・環境分野、質量分析やイオンモビリティが重要なプロテオミクスが関係するバイオ関連・製薬業界など

研究者

大学院理学研究科

美齊津 文典  

Fuminori Misaizu