行のキーワード 590ワード

構造材料

構造測定

放射光による原子スケールの構造測定

前の画像
次の画像
概要

主に放射光の回折を用いて、高い精度で構造観測を行います。エピタキシャル薄膜や固液界面など,計測技術が確立していない測定対象を見るのが特徴です。

従来技術との比較

大強度の放射光と,情報科学を併用することで,標準的なX線構造解析の手法が適用できない物質の構造を明らかにします。

特徴・独自性
  • 周期性が完全でない物・表面や界面の構造解析を行う。
  • 有機半導体の表面構造緩和
  • 酸化物の界面構造
  • ある程度平滑な表面(AFMで見える程度,ステップ表面)があれば、その表面近傍の構造を非破壊・非接触で0.01nmの精度で決める事が可能
実用化イメージ

固液界面でのプロセスの進行過程を見るような応用が考えられます。 図1:測定セットアップ,図2:20ms露光でのX線反射率測定による固液界面構造観測例

研究者

大学院理学研究科

若林 裕助  

Yusuke Wakabayashi

構造評価

ナノスケールでの結晶構造・電子状態解析技術の開発と応用

前の画像
次の画像
特徴・独自性
  • 透過型電子顕微鏡(TEM)で、組成・結晶構造を評価した領域の精密構造解析、物性測定を可能とするため、独自の実験装置・解析技術開発(分光型収束電子回折TEM、高分解能EELSTEM、軟X線発光分光TEM)と、その物性物理学への基礎的応用(フラレン、ナノチューブ、ボロン化合物、GMR物質、準結晶等)を行っている。また、東北大オリジナルの軟X線発光分光装置の実用化を目指し、企業等との共同研究開発を継続中。
実用化イメージ

半導体、誘電体、金属などの顕微解析による構造・物性評価に関する共同研究や、分析技術に関する学術指導が想定される。

研究者

多元物質科学研究所

寺内 正己  

Masami Terauchi

構造物

東アジアにおける仏教建築様式史の再構築と、歴史的建造物および歴史資料の保存・活用研究

前の画像
次の画像
特徴・独自性
  • 建築史学:東アジアにおける禅院の建築と山水を中心とした建築・都市・庭園に関する研究。歴史的建造物調査や、学際的研究会の主催を通した、仏教建築様式史の再構築。
  • 文化財学:歴史的建造物の保存と再生に関する実践的研究。過去の評価と未来への継承 時間・時間のリデザイン。歴史的建造物および歴史資料の、国宝・重要文化財・登録有形文化財としての評価を通した、国益に直結する人文科学的・工学的研究。
実用化イメージ

歴史的建造物および関連する歴史資料を文化財として評価するにあたり、文化庁・奈良文化財研究所・文化財建造物保存技術協会・宮城県・仙台市などの国・県・市の関係諸機関と連携。

研究者

大学院工学研究科

野村 俊一  

Shunichi Nomura

構造流体連成

酵素活性

ナノバブル:生命科学とサステナブル農業への応用展開

概要

ナノバブル技術には従来の洗浄と異なる革新的な機能が期待できる。純水に微量の無機イオンを加えることで、長期間安定したナノバブルの製造に成功した。ナノセルとも呼ぶことができる10nmレベルの微粒子であり、界面活性剤などが必要なく安定的に分散している。表面に数nm以下の凹凸構造があり、ナノ特有の機能が期待できる。安全性に優れており、医療やバイオ、農業分野など広範な技術領域で応用できる可能性がある。

従来技術との比較

従来のファインバブルはシャワー洗浄等で注目されているが、具体的機能は未だ不明。東北大学は10nmレベルのナノバブルの製造と測定に成功。単なる洗浄効果を凌駕し、生体や植物に対する広範な機能を有する。

特徴・独自性
  • 10nmレベルのナノ粒子(量子ドット)的な存在である
  • 分散剤を必要とせずに長期に安定している(凝集しない)
  • 生体や植物に対して安全でありながら特異な機能を発揮する
実用化イメージ

未知な領域で新たな機能を発揮させて欲しい。医療・バイオ分野等、素材として取り扱う企業との共同研究を希望。水としての利用が可能であり、他の薬剤との相乗効果を希望する場合、本技術が有効と思われる。

研究者

未来科学技術共同研究センター

高橋 正好  

Takahashi Masayoshi

高速自由飛行

次世代流動実験研究センター 弾道飛行装置

前の画像
次の画像
特徴・独自性
  • 弾道飛行装置は、高速で飛翔体を射出する装置です。射出速度は200m/s の亜音速から最高6km/sの超音速領域までの広い速度範囲であり、気体中、液体中の高速自由飛行実験、高速衝突実験が可能であり、航空宇宙、地球物理分野をはじめとする様々な理工学分野における基礎・応用実験が行えます。
実用化イメージ

流体科学研究所における共用(外部利用可)の超音速実験研究に関わる施設の設備であり、高速飛翔体まわりの流れの計測から、高速衝突による材料物性の計測まで、幅広い分野でご利用いただけます。

研究者

流体科学研究所

永井 大樹  

Hiroki Nagai

高速衝突

次世代流動実験研究センター 弾道飛行装置

前の画像
次の画像
特徴・独自性
  • 弾道飛行装置は、高速で飛翔体を射出する装置です。射出速度は200m/s の亜音速から最高6km/sの超音速領域までの広い速度範囲であり、気体中、液体中の高速自由飛行実験、高速衝突実験が可能であり、航空宇宙、地球物理分野をはじめとする様々な理工学分野における基礎・応用実験が行えます。
実用化イメージ

流体科学研究所における共用(外部利用可)の超音速実験研究に関わる施設の設備であり、高速飛翔体まわりの流れの計測から、高速衝突による材料物性の計測まで、幅広い分野でご利用いただけます。

研究者

流体科学研究所

永井 大樹  

Hiroki Nagai

高速ナノ液滴

革新的水利用技術:高速ナノ液滴が拓く「超節水・薬剤フリー・濡れない」殺菌・洗浄

前の画像
次の画像
概要

水蒸気を混合した加圧ガスを噴射ノズルから噴出することにより、水蒸気を大気により冷却・凝縮(液化)させ、高速で噴射されるナノメートルスケールの液滴(高速ナノミスト)を生成することが可能です。本技術は、その方法と装置に関するものです。

・ナノミスト発生装置
https://www.t-technoarch.co.jp/data/anken/T20-702.pdf

従来技術との比較

本技術は液滴径が小さく、薬剤を用いずとも力学的・化学的作用などによる殺菌・洗浄が可能。必要水量も少なくドライかつ低温での殺菌・洗浄処理が可能。

特徴・独自性
  • 高速でナノメートルスケールの液滴を噴出することが可能
  • 低温、超節水、薬剤フリー、濡れない、殺菌・洗浄が可能
  • 液滴径のサイズや数の制御が可能
実用化イメージ

手洗い、シャワー(寝たきり、水インフラがない地域、災害、治療等)
食品殺菌(食肉、農産物、魚介類、加工品、調理用具、身の回りの物品)
半導体洗浄、耐熱性の低い材料や濡らさない必要のある材料の殺菌・洗浄

研究者

流体科学研究所

佐藤 岳彦  

Takehiko Sato

高速燃焼

高圧ガスタービン環境における燃焼評価と気流噴射弁の技術開発

前の画像
次の画像
特徴・独自性
  • 燃焼は、温度、濃度、速度、高速化学反応といった多次元のダイナミックスが複合した複雑な過程です。当研究室は、高圧ガスタービン環境を実現できる世界的にも希な高圧燃焼試験装置を有し、高温高圧下の燃焼実験ならびにレーザー分光計測に独自性があります。航空宇宙推進系のみならず各種高圧化学反応炉の設計技術と安全評価技術、新燃料の燃焼技術、さらには高圧下の液体微粒化技術の研究開発にも取り組んでいます。
実用化イメージ

航空宇宙、自動車、電力、工業炉、化学プラント業界における、多様な燃料に対するガスタービン燃焼と評価、高圧噴霧生成と制御、高圧下のレーザー燃焼診断、化学反応炉の安全設計等に関する連携が可能です。

研究者

流体科学研究所

小林 秀昭  

Hideaki Kobayashi

new高圧ガスタービン環境における燃焼評価とカーボンニュートラル燃料の燃焼技術開発

前の画像
次の画像
概要

 

従来技術との比較

 

特徴・独自性
  • 燃焼は、温度、濃度、速度、高速化学反応といった多次元のダイナミックスが複合した複雑な過程です。当研究室は、高圧ガスタービン環境を実現できる世界的にも希な高圧燃焼試験装置を有し、高温高圧下の燃焼実験ならびにレーザー分光計測に独自性があります。航空宇宙推進系のみならず、エネルギー分野の研究にも取り組んでいます。近年では、カーボンニュートラル燃料として注目されているアンモニア燃焼研究にも取り組んでいます。
  • 航空宇宙、自動車、電力、工業炉、化学プラント業界における、燃焼評価、アンモニア燃焼現象の評価、多様な燃料に対するガスタービン燃焼と評価、高圧噴霧生成と制御、高圧下のレーザー燃焼診断等に関する連携が可能です。"""
実用化イメージ

 

研究者

流体科学研究所

早川 晃弘  

Akihiro Hayakawa

高速ビジョン

動きをとらえる高速リアルタイムビジョン技術

前の画像
次の画像
特徴・独自性
  • 産業応用において視覚処理・画像認識はますます重要な技術となっています。視覚は第一義的には姿・形をとらえる感覚ですが、それと同時に「動き」をとらえる感覚でもあります。当研究室では、動きをとらえるセンサとしてのビジョン技術という視点から、高フレームレートビジョンシステムとその応用、LED や高速プロジェクタ等の能動照明との連携、加速度センサ等の他のセンサとの情報融合などについて研究を進めています。
実用化イメージ

運動する対象の計測全般において、高フレームレートビジョンは強力なツールとなります。さらに高速プロジェクタや他のセンサと組み合わせることにより、3次元計測や動物体検出・同定などの技術が展開できます。

研究者

未踏スケールデータアナリティクスセンター

鏡 慎吾  

Shingo Kagami

高速プロジェクタ

動きをとらえる高速リアルタイムビジョン技術

前の画像
次の画像
特徴・独自性
  • 産業応用において視覚処理・画像認識はますます重要な技術となっています。視覚は第一義的には姿・形をとらえる感覚ですが、それと同時に「動き」をとらえる感覚でもあります。当研究室では、動きをとらえるセンサとしてのビジョン技術という視点から、高フレームレートビジョンシステムとその応用、LED や高速プロジェクタ等の能動照明との連携、加速度センサ等の他のセンサとの情報融合などについて研究を進めています。
実用化イメージ

運動する対象の計測全般において、高フレームレートビジョンは強力なツールとなります。さらに高速プロジェクタや他のセンサと組み合わせることにより、3次元計測や動物体検出・同定などの技術が展開できます。

研究者

未踏スケールデータアナリティクスセンター

鏡 慎吾  

Shingo Kagami

抗体

タンパク質デザインをシーズとした未踏ナノ材開拓とバイオテクノロジーの異分野展開

前の画像
次の画像
特徴・独自性
  • ドメイン単位とした蛋白質の構造情報と進化工学を利用して、ボトムアップに目的構造・機能を持つ蛋白質分子をデザインする技術構築を行い、蛋白質研究を真の「工学」へ脱皮させることを目指しています。これまでに、無機材料を室温合成できる蛋白質や無機材料表面を識別し接着できる蛋白質の創生やナノ材と酵素タンパク質のハイブリッド化技術による高機能セルラーゼの開発などに成功しています。
実用化イメージ

バイオセンサー、バイオプローブ、固相基質を対象にした高機能ハイブリッド酵素。

研究者

大学院工学研究科

梅津 光央  

Mitsuo Umetsu

ソフトでウェットな計測・発電デバイス

前の画像
次の画像
特徴・独自性
  • モノづくり工学の次代ステージは、エネルギー効率や生命環境親和性に優れるバイオ材料(タンパク質や細胞)の機能活用である。我々は、脆弱なバイオ材料の機能を最大限に活用する技術体系の構築に取り組んでおり、「ハイドロゲルへの電気配線技術(画像㈰)」、「バイオ組織化の電気制御技術(画像㈪)」、「酵素電極シールの作製技術(画像㈫)」などを実現している。
実用化イメージ

上記技術は、「細胞アッセイシステム」、「DDS デバイス」、及び酵素発電で駆動する「健康医療機器」などに活用され、健康・医療・創薬・食品・化粧品業界に関係すると期待している。

研究者

大学院工学研究科

西澤 松彦  

Matsuhiko Nishizawa