行のキーワード 142ワード

内視鏡

光を利用した低侵襲治療・診断システムの開発

前の画像
次の画像
特徴・独自性
  • 細く柔軟な光ファイバを内視鏡に挿入して患部にレーザ光を照射する低侵襲治療や、内視鏡を用いて光学的な診断を行うための装置や技術についての研究を行っています。また、これらの治療・診断に用いるための光ファイバとして、通常のガラス光ファイバの他に、強力なレーザ光や幅広い波長の光の伝送が可能な、中空光ファイバと呼ばれる特殊な光ファイバを用いた治療・診断システムの研究開発も行っています。
実用化イメージ

医療機器メーカーをはじめ、本分野への新規参入を検討している電子機器、通信装置、および計測機器メーカーなどが連携先として考えられます。

研究者

大学院医工学研究科 医工学専攻 医療機器創生医工学講座(医用光工学分野)

松浦 祐司  

Yuji Matsuura

マイクロ・ナノマシニング技術を⽤いた低侵襲医療機器・ヘルスケア機器

前の画像
次の画像
特徴・独自性
  • 精密機械加工技術、MEMS(微小電気機械システム)技術などを用いて小さくとも様々な多機能を実現する新たな医療機器、ヘルスケア機器を開発しています。体内で検査治療を行う内視鏡やカテーテルを高機能化するほか、今までにない新たな医療機器を開発し、より精密で安全な検査・治療、新たな検査・治療の実現を目指します。また、体表に装着する薄く軽い高機能なデバイスにより、場所や時間の制約のない新たなヘルスケアを目指します。
実用化イメージ

基礎研究の他、実用化を目指し臨床医師および医療機器メーカーをはじめとした企業と協力して開発を進めています。また、大学から企業への橋渡しの目的で大学発ベンチャー企業を起業し共同した開発を進めています。

研究者

大学院医工学研究科 医工学専攻 医療機器創生医工学講座(ナノデバイス医工学分野)

芳賀 洋一  

Yoichi Haga

内包フラーレン

新奇有機半導体材料の合成と応用

特徴・独自性
  • 本研究では、外観構造が全く同じであるにも関わらず、電子の数が1つだけ違う特異な二つの分子を合成し、これらを混合することで、高い伝導性と物性制御性を兼ね備えた有機半導体材料を創製します。構造が同じ分子をドーパントとして用いるため、従来のドーピングの概念を超える高い割合での材料複合が可能と考えられます。幅広い物性を有する有機半導体の即時提供を可能とし、デバイス分野全体の飛躍的な進化を目指します。
実用化イメージ

研究者

高等研究機構学際科学フロンティア研究所 新領域創成研究部学際基盤研究分野 物質材料・エネルギー研究領域

上野 裕  

Hiroshi Ueno

内陸地殻内地震

活断層と地震ハザード評価

前の画像
次の画像
特徴・独自性
  • 地形・地質調査を通じて、活断層での地震発生履歴を解明し、甚大な被害をもたらす内陸地震の発生規模と確率を予測する研究を行っている。また、三陸海岸の数万年?数十万年の超長期の地殻変動を解明し、海溝型超巨大地震の発生サイクルの解明を目指している。さらに、大地震の続発性・相互連鎖性を説明する断層モデルを数値計算で再現し、地震の発生予測の高精度化を行っている。
実用化イメージ

活断層の調査にあたっては大規模な調査溝掘削や新しい調査・探査技術の開発が欠かせない。地質・建設コンサルタントなど土木関連企業との連携を考えたい。

研究者

災害科学国際研究所 災害評価・低減研究部門 陸域地震学・火山学研究分野

遠田 晋次  

Shinji Toda

ナトリウム

エネルギー利用を目指した“水素化物”の基盤・応用研究

前の画像
次の画像
特徴・独自性
  • エネルギー利用を目指した“水素化物”の基盤・応用研究に取り組んでいます。主要なテーマは、燃料電池などの水素利用技術を支える高密度水素貯蔵材料の開発です。現在、軽量元素や特異なナノ構造を有する新たな錯体・合金・ペロブスカイト水素化物群を合成し、原子・電子構造解析なども駆使した多面的な研究を進めています。また、リチウム高速イオン伝導材料などの“水素化物”に関する広範な研究領域も開拓しています。
実用化イメージ

水素利用・貯蔵システムや次世代二次電池などの基盤材料開発を通して、素材・電気・エネルギーなどに関する産業展開に貢献するとともに、関心をお持ちの企業・団体などへの学術指導も積極的に実施しています。

研究者

高等研究機構材料科学高等研究所 デバイス・システムグループ

折茂 慎一  

Shin-Ichi Orimo

ナノ

電子顕微鏡で見えない微細な不純物クラスターや欠陥の分析と機能の解明

前の画像
次の画像
特徴・独自性
  • 金属から半導体・絶縁体まで、原子1個1個を3次元実空間で原子スケールの分解能でマッピングできるレーザー3次元アトムプローブ法と、原子1個が格子点から抜けた単原子空孔から空孔集合体までを非常に高い感度で検出できる陽電子消滅法を組み合わせて、従来の分析方法では検出困難な、微細なクラスターや欠陥を分析し、それらが材料にあたえる影響や機能の解明を行っている。
実用化イメージ

ナノ構造を制御した新規材料開発、構造材料の劣化機構の解明から半導体デバイス製造の歩留まり低下の原因解明、量子デバイス開発まで幅広い分野について上記解析技術を活用したい企業や団体と共同研究を希望する。

研究者

金属材料研究所 材料設計研究部 材料照射工学研究部門

永井 康介  

Yasuyoshi Nagai

ナノインデンテーション

原子力・核融合材料

特徴・独自性
  • 原子力や将来の核融合炉に用いられる機能・構造材料の開発と評価に関する研究を進めている。特に、メカニカルアロイング法による分散強化合金の創製や、ナノインデンテーション法を駆使した超微小試験技術に関して独自の方法を開発している。
実用化イメージ

原子力業界や材料業界

研究者

金属材料研究所 材料設計研究部 原子力材料工学研究部門

笠田 竜太  

Ryuta Kasada

ナノインプリント

ナノスケール超微細構造を利用した超小型・高機能光デバイスの開発

前の画像
次の画像
特徴・独自性
  • ナノ構造と光の相互作用から生じる新規光学現象を利用した超小型・高機能光デバイスの研究を行っています。また、ナノ光学素子を実用化する上で顕在している問題を克服する新たな製作技術の開発も行っています。
  • 《主な研究テーマ》
  • ■ 可動メタマテリアルによる光の動的制御
  • ■ 微細周期構造を利用したカラーフィルタ
  • ■ 表面原子自己拡散を利用した超平坦化技術
  • ■ 超低損失シリコンナノフォトニクスの基礎研究
実用化イメージ

革新的光制御・センサデバイスの実現と社会実装を目指しています。「ナノフォトニクス、メタマテリアル、生物模倣光学」と「微細加工、光MEMS」の融合による光操作の未来技術と応用展開について研究しています。

研究者

大学院工学研究科 ロボティクス専攻 ナノシステム講座(情報ナノシステム学分野)

金森 義明  

Yoshiaki Kanamori

型の線幅よりも微細な金属配線パターンの作製が可能!

概要

湿式エッチングでサブマイクロ線幅の金属配線付き基板を作製する方法
https://www.t-technoarch.co.jp/data/anken/T11-050.pdf

従来技術との比較

従来のフォトレジストマスクをウエットエッチングに用いた場合、金属配線幅は約10μmが下限でした。エッチング耐性に優れたレジストの熱ナノインプリント成形で、線幅0.1μmの金属配線の作製に成功しました。

特徴・独自性
  • 金・銀・銅・クロムなどのウエットエッチング加工が可能です
  • 金属と有機レジストを化学結合を介してつなぐ分子接着剤を用いています
  • サイドエッチングによる狭線化が可能なため、マイクロサイズの金属線幅をサブミクロンサイズまで縮小することが可能です
実用化イメージ

透明導電パネル・磁気シールドフィルム・帯電防止シートなどへの利用が考えられます。ウエットエッチング方式での加工なので、ロールtoロール製法にも対応が期待できます。

研究者

多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター 光機能材料化学研究分野

中川 勝  

Masaru Nakagawa

押し込み弾性率8.4 GPa!原版モールドの複製や欠陥検査を安価に実現

概要

ポリイミドより強靭な樹脂モールド
https://www.t-technoarch.co.jp/data/anken/T11-053.pdf

従来技術との比較

無機ナノ粒子が高含有率で存在するためシランカップリング剤による表面処理により、繰り返し離型が可能な離型層を付与することができます。有機無機ハイブリッド化により、高強度と高耐久性を実現しました。

特徴・独自性
  • ・極細の45nmのライン-アンド-スペースパターンの繰返し転写が行えます。
  • ・室温での光ナノインプリント成形にて、モールドを作製することができます。
実用化イメージ

ナノ構造オプティクス、平面レンズなどの光学用途をはじめ、様々な光学・電気デバイスの材料加工を行うための成形型としての活躍が期待されます。

研究者

多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター 光機能材料化学研究分野

中川 勝  

Masaru Nakagawa

nm~µmサイズが混在しパターンの粗密がある構造体を精密に製造可能!

概要

モールドエッジにバリが発生せず、均一な残膜が得られる光ナノインプリント方法
https://www.t-technoarch.co.jp/data/anken/T19-159.pdf

従来技術との比較

スピン塗布膜への光型成形では、モールド(型)の側壁の汚染が繰り返し利用を妨げます。所定量の液量を印刷液滴の配置数で規定できるので、モールド外周部への光硬化性液体の回り込みを防ぐことができます。

特徴・独自性
  • サブピコリットルの定形液滴を印刷配置できる孔版印刷です
  • 孔版印刷の版はレーザー加工で作製するため従来のような印刷欠陥がありません
  • 膜厚10nmから光硬化膜を所定位置に形成できます
  • 印刷配置を制御できるので、型表面にあるパターン密度の粗密に対応することができます
実用化イメージ

ナノ構造オプティクス、平面レンズ、細胞培養シート、など表面への樹脂ナノパターンの付与、樹脂マスクを利用したリソグラフィ加工に用いることができます

研究者

多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター 光機能材料化学研究分野

中川 勝  

Masaru Nakagawa

ナノインプリントリソグラフィ

ナノインプリントリソグラフィによる先進光機能材料のナノファブリケーション

前の画像
次の画像
特徴・独自性
  • ナノインプリント技術は、パターンサイズとデバイス面積を広範囲にカバーでき、産業界に向いた量産性に優れるナノファブリケーション法として注目されています。当研究グループは、単分子膜工学を推進し、界面機能分子制御の学理の追求と実学応用を進めています。離型分子層、密着分子層、偏在分子層を設計した光硬化性樹脂を研究し、ナノインプリントリソグラフィによる半導体、金属、無機酸化物の超微細加工に挑戦しています。
実用化イメージ

透明導電膜、光導波路、メタマテリアル等の先進光機能材料に関する研究成果を発表しました。材料、機械、マスク、デバイスメーカーと連携し、日本のものづくりの強化に貢献します。

研究者

多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター 光機能材料化学研究分野

中川 勝  

Masaru Nakagawa

ナノ液滴

革新的水利用技術:高速ナノ液滴が拓く「超節水・薬剤フリー・濡れない」殺菌・洗浄

前の画像
次の画像
概要

水蒸気を混合した加圧ガスを噴射ノズルから噴出することにより、水蒸気を大気により冷却・凝縮(液化)させ、高速で噴射されるナノメートルスケールの液滴(高速ナノミスト)を生成することが可能です。本技術は、その方法と装置に関するものです。

・ナノミスト発生装置
https://www.t-technoarch.co.jp/data/anken/T20-702.pdf

従来技術との比較

本技術は液滴径が小さく、薬剤を用いずとも力学的・化学的作用などによる殺菌・洗浄が可能。必要水量も少なくドライかつ低温での殺菌・洗浄処理が可能。

特徴・独自性
  • 高速でナノメートルスケールの液滴を噴出することが可能
  • 低温、超節水、薬剤フリー、濡れない、殺菌・洗浄が可能
  • 液滴径のサイズや数の制御が可能
実用化イメージ

手洗い、シャワー(寝たきり、水インフラがない地域、災害、治療等)
食品殺菌(食肉、農産物、魚介類、加工品、調理用具、身の回りの物品)
半導体洗浄、耐熱性の低い材料や濡らさない必要のある材料の殺菌・洗浄

研究者

流体科学研究所 ナノ流動研究部門 生体ナノ反応流研究分野

佐藤 岳彦  

Takehiko Sato

ナノカーボン

新奇有機半導体材料の合成と応用

特徴・独自性
  • 本研究では、外観構造が全く同じであるにも関わらず、電子の数が1つだけ違う特異な二つの分子を合成し、これらを混合することで、高い伝導性と物性制御性を兼ね備えた有機半導体材料を創製します。構造が同じ分子をドーパントとして用いるため、従来のドーピングの概念を超える高い割合での材料複合が可能と考えられます。幅広い物性を有する有機半導体の即時提供を可能とし、デバイス分野全体の飛躍的な進化を目指します。
実用化イメージ

研究者

高等研究機構学際科学フロンティア研究所 新領域創成研究部学際基盤研究分野 物質材料・エネルギー研究領域

上野 裕  

Hiroshi Ueno

ナノ界面制御

摩擦と摩耗の制御に立脚した高機能機械システムの創成

前の画像
次の画像
特徴・独自性
  • トライボロジー(摩擦と摩耗の制御)は、機械に対する普遍的要求である「高機能、高効率、高信頼性」の鍵を握る科学技術です。当研究室では、摩擦と摩耗制御の鍵として「なじみ」に着目し、摩擦により誘起される接触面での現象の体系的理解を基礎研究の柱に、さらに摩擦により高機能界面を継続的に自己形成させる技術を摩擦・摩耗制御技術と位置づけ、そのための材料・表面テクスチャの創成技術開発、表面エネルギー・摩擦化学反応の制御技術開発を行っています。
実用化イメージ

トライボロジーは、多面的な知識の融合が必要となる学際科学であり、モノづくりのための基盤技術です。様々な分野の技術者、研究者の皆様との深い連携は、摩擦と摩耗の制御に基づく高機能、高効率、高信頼性を有するモノづくりに不可欠です。産学連携の研究開発を希望する所以です。

研究者

大学院工学研究科 機械機能創成専攻 機能システム学講座(ナノ界面制御工学分野)

足立 幸志  

Koshi Adachi

ナノ顔料

難水溶化という従来の逆の分子設計に基づく新規ナノ薬剤の創出

前の画像
次の画像
特徴・独自性
  • プロドラッグ分子のみで構成されるナノ粒子『ナノ・プロドラッグ』を提唱し、疾患部位への高効率なドラッグデリバリーが可能な抗がん剤や点眼薬の開発を行っています。『ナノ・プロドラッグ』は、難水溶性にする薬剤設計指針に基づき化合物合成したプロドラッグ分子を、独自の有機ナノ粒子作製手法である『再沈法』に共することで、粒径100 nm以下で制御できます。現在、薬理効果の評価、生体内・細胞内動態に取り組んでいます。
実用化イメージ

『再沈法』は薬剤化合物に限らず、様々な有機分子をナノ粒子化する汎用性の高い手法です。有機ナノ粒子を作製制御し評価する技術を持っており、有機ナノ粒子の物性評価に関する共同研究を希望します。

研究者

多元物質科学研究所 附属マテリアル・計測ハイブリッド研究センター 有機・バイオナノ材料研究分野

笠井 均  

Hitoshi Kasai

ナノ構造

表面力測定による材料ナノ界面科学の創製

前の画像
次の画像
特徴・独自性
  • 固- 液界面現象、そして表面間の相互作用を分子レベルで具体的に解明することを目的として研究しています。中心手段は、2つの表面間に働く相互作用力の距離依存性を直接測定する表面力測定、そして当研究分野で開発した液体ナノ薄膜の構造化挙動を高感度で評価できる共振ずり測定法です。従来困難であった不透明試料( 金属、セラミック、高分子など) が測定できるツインパス型表面力装置も独自開発し、電極界面の評価も行っています。
実用化イメージ

機能材料界面における表面電荷や吸着状態等の特性やナノレオロジー・ナノトライボロジーの評価が可能です。機械、潤滑剤、ナノ材料、塗料・シーラント、化粧品等の業種に対して共同研究・学術指導を行う用意があります。

研究者

未来科学技術共同研究センター 開発研究部 界面分子エンジニアリング

栗原 和枝  

Kazue Kurihara

バイオ材料とナノテクノロジーに基づくセンサ・電子デバイスの開発

前の画像
次の画像
特徴・独自性
  • エレクトロニクス分野で培われてきた技術を応用して、健康で安全な社会を発展させ、私たちの生活の質を高めるようなデバイスの開発研究を進めています。例えば、半導体のセンサインターフェイスとしての特性を、薬物検出やスクリーニングアッセイなどの生化学・医療用途に利用する研究や、生きた細胞を使って神経回路を作り上げ、脳の機能解析を支援する新規技術の開発を進めています。
実用化イメージ

シリコンチップ上に形成した人工細胞膜にイオンチャネルタンパク質を埋め込むと、極限まで規定された環境下でその機能や薬理応答を調べることができます。この技術は、新薬候補化合物の高感度な迅速検出法につながります。

研究者

電気通信研究所 人間・生体情報システム研究部門 ナノ・バイオ融合分子デバイス研究室

平野 愛弓  

Ayumi Hirano

ナノコンポジット

磁石は地球を救う!-高性能永久磁石材料の開発(エネルギー・資源問題の解決に向けて)-

前の画像
次の画像
特徴・独自性
  • 永久磁石材料の高性能化と新材料開発を行っている。これまでの成果に未分離混合希土類-Fe-B系焼結磁石、HDDR現象による高保磁力希土類磁石粉末、再結晶集合組織による高性能Fe-Cr-Co系磁石の開発などがある。最近ではNd-Fe-B系磁石におけるDyの削減技術の開発や、永久磁石の自然共鳴がGHz 帯にあることに着目した新しい電磁波吸収体ならびにナノ粒子技術による高周波磁性材料の開発も行っている。
実用化イメージ

業界としては磁性材料に興味または生産している素材・材料関連、自動車関連、電気・電子関連、化学関連企業など。

研究者

大学院工学研究科 知能デバイス材料学専攻 情報デバイス材料学講座(スピン情報材料学分野)

杉本 諭  

Satoshi Sugimoto

構造制御による複合材料の多機能化と新機能付与

前の画像
次の画像
特徴・独自性
  • 科学技術の発展とともに、機械やデバイスの小型、軽量化、高性能化が求められている。当研究室では、独自装置を用いた材料創製技術、理論に基づいた数値解析技術を駆使し、種々のナノ粒子および繊維をポリマー、金属、セラミクス材料と複合化している。そして、複数の機能( 例:高強度、超軽量、発電機能、損傷検出機能、自然分解性など)を同時に発現する多機能ナノコンポジットの創製と特性発現機構の理解を得意としている。
実用化イメージ

ナノコンポジットの多機能化、新機能付与によって既存の機械やデバイスのさらなる小型化、高性能化、新機能追加による付加価値向上を目指している企業等との共同研究を希望する。

研究者

大学院環境科学研究科 先端環境創成学専攻 資源循環プロセス学講座(複合材料設計学分野)

栗田 大樹  

Hiroki Kurita