東北大学 研究シーズ集

LANGUAGE

アルファベットのキーワード 171ワード

A

ABCトランスポーター

大腸がんにおけるABC トランスポーターの発現制御

前の画像
次の画像
特徴・独自性

大腸がんは、わが国のがん死亡原因の上位に位置し、手術療法以外には根治的治療法がない。がん部の特徴を探索するために、私たちは大腸がん部と非がん部の転写産物を網羅的に解析している。例えば抗癌剤の有効性決定因子の一つであるABC トランスポーターの発現に注目したところ、ABC トランスポーターの一つであるABCC3は大腸がん発がんに関わるWnt シグナルによって抑制されることを見出した。

産学連携の可能性(想定される用途・業界)

臨床検体から容易にトランスクリプトームをはじめとする網羅的解析を行うことができるようになった。これらの結果は、創薬標的発見の一助となることが期待され、製薬業界でこの知見の展開を希望している。

大学院医学系研究科・医学部 附属創生応用医学研究センター がん医学コアセンター 細胞増殖制御分野
中山 啓子 教授 医学博士
NAKAYAMA Keiko Professor

Additive manufacturing

電子ビーム積層造形技術による素形材製造技術

前の画像
次の画像
特徴・独自性

大量生産を中心とする金属製品の「もの作り」は海外へ流出し、日本が生き残ってゆくためには高付加価値の多品種少量生産やカスタムメイド生産に移行する必要があります。電子ビーム積層造形法は三次元CADデータに基づく電子ビーム走査により、金属粉末を選択的に溶融・凝固させた層を繰り返し積層させて三次元構造体を製作する新たなネットシェイプ加工技術です。金型レスのAdditivemanufacturing 技術として有望です。

産学連携の可能性(想定される用途・業界)

人工関節などの医療用機器のカスタム製造技術として。難加工性合金(チタン合金、マグネシウム合金など)からなる航空機・自動車部品などの製造に最適です。鋳造技術では不可能な素形材製造技術として期待されます。

金属材料研究所 加工プロセス工学研究部門
千葉 晶彦 教授 博士(工学)
CHIBA Akihiko Professor

adipose tissue

代謝解析装置の開発

前の画像
次の画像
特徴・独自性

生体の代謝状態を的確かつ簡便に測定することができるように構成した生体の代謝状態を解析する装置及録媒体に関する発明であり、任意の時点と異なる2 時点間での脂肪組織における酸素消費量とエネルギー産生量を換算するソフトウエアを備える点に特徴を有する(特許第3848818)。
前記健康管理に有益な指針情報として、身体インピーダンスの計測値に基づく任意の1 時点における代謝状態を表す指標と、異なる2 時点における代謝状態を表す指標(脂肪組織における酸素消費量とエネルギー産生量)を算出できる点に特徴を有する。本算出法は既存の体脂肪計に備えられている基礎代謝量の推定換算方法とは全く別の算出式を使用し、より高精度である。本装置の解析ソフトは、インピーダンス値や除脂肪量を算出する装置に追加して備えることも可能である。
本発明(特許)を活用して事業化を企てる企業または出資者・開発支援者を求めている。

未来科学技術共同研究センター 開発研究部 戦略的食品バイオ未来産業拠点の構築
野々垣 勝則 教授 医学博士
NONOGAKI Katsunori Professor

Advanced Brain Science

脳機能および精神的健康感の維持向上法開発研究

特徴・独自性

スマート・エイジング国際共同研究センター(通称SAIRC)は、国際的な研究拠点として、超高齢社会における新たな統合的加齢科学分野を切り開き、世界を先導するスマート・エイジング研究を通じて、持続可能型高度成熟社会の形成に寄与するため、文系・理系に拘らない架橋融合的研究、国際共同研究、産学連携研究などを展開します。
脳機能イメージング及び実験心理学的手法を核としながら、心を豊かに穏やかに加齢するための方法論的研究を、脳を直接研究対象とした脳科学研究、認知機能向上法開発のための認知心理学研究、認知症予防、メンタルヘルスを対象とした医学的研究、こころや死生観までを対象とした哲学・心理学研究・倫理学研究などを融合して推進します。
スマート・エイジング研究に関する共同研究を募集しますし、学術指導も積極的に行います。

加齢医学研究所 脳科学研究部門 応用脳科学研究分野
川島 隆太 教授 医学博士
KAWASHIMA Ryuta Professor

Aging

Exercise pill、Geroprotector

特徴・独自性

老化は、高齢化社会日本の重要課題であり、むやみな寿命延長ではなく、健康寿命の延長を目指す必要がある。そのために、高齢者の骨格筋萎縮/ Frailty 抑制と老化そのものの抑制する薬剤の開発が急務である。我々は、Exercise pill、Geroprotector 活性を持つ小分子化合物の標的タンパク質の同定を行い、druggable な老化因子の機能解析、SBDDの基礎となるX線構造解析を行っている。

産学連携の可能性(想定される用途・業界)

複数のExercise pill、Geroprotectorの標的タンパク質、X線共結晶構造からリード化合物を出発点に新しい化合物をデザインして創薬を目指す。

加齢医学研究所 脳科学研究部門 神経機能情報研究分野
小椋 利彦 教授 医学博士
OGURA Toshihiko Professor

ALS

筋萎縮性側索硬化症(ALS)に対する肝細胞増殖因子(HGF)を用いた治療法の開発

前の画像
次の画像
特徴・独自性

筋萎縮性側索硬化症(ALS)は成人発症の神経変性疾患で、脳から脊髄に至る運動ニューロンの系統的変性脱落によって全身の筋力低下・筋萎縮をきたし、やがて呼吸不全に至る過酷な疾患である。ALSに対する治療法開発のため、東北大学神経内科では世界に先駆けてラットによるALSモデル動物の開発に成功した(Nagai M,et al. J Neurosci 2001)。このALSラットに対してヒト型遺伝子組換えHGF 蛋白の脊髄腔内持続投与を行ったところ、発症期からの投与開始でも運動ニューロンの脱落変性を抑制し、疾患進行を大幅に遅らせることに成功した。

産学連携の可能性(想定される用途・業界)

大阪大学発のベンチャー企業であるクリングルファーマ社と共同でヒトに使用可能なGMP基準のヒト型リコンビナントHGF 蛋白による非臨床試験が終了し、東北大学病院臨床研究推進センターの協力の下で2011年7 月からフェーズI 試験が開始されている。さらにフェーズII 試験の準備を行っている。今後は大手製薬企業とも連携する予定である。

大学院医学系研究科・医学部 医科学専攻 神経・感覚器病態学講座 神経内科学分野
青木 正志 教授 医学博士
AOKI Masashi Professor

antibacterial

歯科用抗菌性チタン合金の可能性

前の画像
次の画像
特徴・独自性

従来の歯科材料開発は生体適合性や機械的性質に重きが置かれてきたが、抗菌性も重要と考えられる。特に歯科インプラントのように生体内外にまたがって用いられる場合に、術後の予後を大きく向上できると思われる。本研究では、チタンの機械加工性と機械的性質の向上を目的として開発したTi-Ag 合金について、歯科用抗菌性チタン合金の可能性を探った。その結果、Ti-Ag合金は、㈰表面へのバイオフィルムの付着を抑制することで、抗菌性を示した。㈪擬似体液中で表面に自然にリン酸カルシウムを形成し、骨伝導能良好と考えられた。㈫純チタンと同等の耐食性を示した。以上のことから、Ti-Ag合金は、生体にやさしく細菌付着に抵抗する新材料として歯科のみならず医学全般に大きく貢献すると期待される。本研究に関して興味のある企業や団体と共同研究を希望する。

大学院歯学研究科・歯学部 歯科学専攻 リハビリテーション歯学講座 歯科生体材料学分野
高橋 正敏 助教 博士(歯学)
TAKAHASHI Masatoshi Assistant Professor

antibiotics

微生物ゲノム情報を用いた抗菌剤創造薬システム

前の画像
次の画像
特徴・独自性

農業・医療分野の動植物感染菌対策に必要な抗菌剤の開発においては、効率的創薬手法の確立が求められており、我々は微生物ゲノム科学を活用して連続的に新規抗菌剤を創出する新技術体系を確立した。新規創薬パイプラインでは、様々な基準抗真菌剤に対する糸状菌の網羅的な転写応答プロファイル解析から、創薬標的候補遺伝子の機能解析と候補化合物の系統的分別探索に有効な、1)細胞システム毎(エネルギー系、細胞膜生合成系、細胞壁系、細胞骨格系等、シグナル伝達系)のレポーターアッセイ系、2)化合物転写応答-表現型データベースによる統計解析を組み合わせた新剤評価系を構築して産業運用している。現在、化合物探索の共同開発が可能な状態にある。

大学院農学研究科・農学部 生物産業創成科学専攻
阿部 敬悦 教授 農学博士
ABE Keietsu Professor

病原因子を標的とした新規抗菌剤の開発を目指したスクリーニング系の開発

前の画像
次の画像
特徴・独自性

ペニシリンの発見以来、各種抗菌剤が発見され重篤な細菌感染症は制御しうる病となった。しかし近年、多剤耐性能を有する各種病原細菌が出現し大きな社会問題となっている。これら細菌感染症の脅威に対抗するためには、新規抗菌剤の継続的な研究開発が必須であり社会的にも強く求められている。既存の抗菌剤の多くは細菌の生存に必須の代謝過程をターゲットとしており新規抗菌剤が登場しても耐性菌は必ず出現するためこの耐性菌問題を避けて通ることはできない。一方、病原細菌が宿主に感染する際に必要な病原因子は細菌の生存に必ずしも必要ではないため、その阻害剤に対する耐性菌の出現頻度は低いと考えられ新規抗菌剤のターゲットとして関心が集まっている。我々はこのような病原因子のなかで新規なタンパク質分泌系であるTat系と鉄代謝系に注目し、それらを標的とする新しいスクリーニング系を開発し、これらの病原因子に対する阻害剤の探索を試みている。この技術を産業界で活用したい企業や団体との共同研究を希望する。

大学院農学研究科・農学部 生物産業創成科学専攻 微生物機能開発科学講座 動物微生物学分野
米山 裕 教授 医学博士
YONEYAMA Hiroshi Professor

antifungal

微生物ゲノム情報を用いた抗菌剤創造薬システム

前の画像
次の画像
特徴・独自性

農業・医療分野の動植物感染菌対策に必要な抗菌剤の開発においては、効率的創薬手法の確立が求められており、我々は微生物ゲノム科学を活用して連続的に新規抗菌剤を創出する新技術体系を確立した。新規創薬パイプラインでは、様々な基準抗真菌剤に対する糸状菌の網羅的な転写応答プロファイル解析から、創薬標的候補遺伝子の機能解析と候補化合物の系統的分別探索に有効な、1)細胞システム毎(エネルギー系、細胞膜生合成系、細胞壁系、細胞骨格系等、シグナル伝達系)のレポーターアッセイ系、2)化合物転写応答-表現型データベースによる統計解析を組み合わせた新剤評価系を構築して産業運用している。現在、化合物探索の共同開発が可能な状態にある。

大学院農学研究科・農学部 生物産業創成科学専攻
阿部 敬悦 教授 農学博士
ABE Keietsu Professor

antisense

核酸医薬への展開を目指した架橋反応性人工核酸の開発

前の画像
次の画像
特徴・独自性

核酸医薬は標的に対して相補的な塩基配列を持つ人工的に化学合成された核酸分子である。核酸医薬による遺伝子発現制御方法は、アンチセンス法、siRNA法、デコイ法などが知られており、21世紀の新しい創薬として注目を集めている。最近、蛋白を発現しないnon coding RNA が遺伝子発現制御に重要な働きをもつことがわかってきており、核酸医薬の新たな標的として注目されている。我々は次世代の核酸医薬の開発を目指し、遺伝子に対して高い効率で反応する新規架橋反応性人工核酸を開発した。

産学連携の可能性(想定される用途・業界)

遺伝子に対する選択的な化学反応は、核酸医薬を用いた遺伝子発現制御方法を効率化するのみならず、従来にはない、遺伝子改変技術として展開できる可能性を有することから、その有用性は非常に高いと考えられる。さらに本技術では共有結合した2本鎖DNAを容易に調整できることから、有用なDNA 材料の創製も可能であり、この技術を産業界で活用したい企業や団体との共同研究を希望する。

多元物質科学研究所 有機・生命科学研究部門 生命機能分子合成化学研究分野
永次 史 教授 薬学博士
NAGATSUGI Fumi Professor

apoplexy

新規脳梗塞急性期治療薬(TMS-007)の開発

特徴・独自性

現在、脳梗塞に対し唯一承認を受けている血栓溶解剤はalteplaseであるが、出血性梗塞の副作用などから、適応は厳密に制限され脳梗塞全体の5%程度にとどまっている。
TMS-007 は新しいプラスミノーゲンモジュレーター活性を有する低分子化合物で、血栓溶解作用のみならず、脳保護作用を併せ持つ。サルを含む複数種の脳梗塞動物モデルにおいてalteplase に勝る有効性が検証されている。我々は、TMS-007 の開発を進めている ティムスならびに東京農工大学と共同で開発を行い、早期に臨床試験段階まで育て上げ、製薬企業にライセンスを行うことを目的とする。

病院
冨永 悌二 教授 医学博士
TOMINAGA Teiji Professor

AUTAC

オートファジーを用いる創薬技術AUTAC

特徴・独自性

低分子医薬が抱える最も大きな問題は、その適用範囲の狭さにある。現在、タンパク質の8割がアンドラッガブルである。この現状を打破する手法(モダリティー)として、デグレーダーが注目されている。
デグレーダーは疾患原因物質を分解除去する機能を持ち、従来の低分子医薬の概念を革新する分子である。私たちのAUTAC は選択的オートファジーを活用した世界初のデグレーダーである。細胞内の有害タンパク質や機能不全ミトコンドリアの分解を促進することができる。他のデグレーダー(例えばPROTAC) では、ミトコンドリア分解は適用範囲外であり、AUTAC はオートファジー誘導剤ならではの優れた特徴を持っている。

産学連携の可能性(想定される用途・業界)

創薬型の製薬企業との連携やライセンスアウトが期待される。

大学院生命科学研究科 分子化学生物学専攻 ケミカルバイオロジー講座 分子情報化学分野
有本 博一 教授 博士(理学)
ARIMOTO Hirokazu Professor

B

BABHY

各種環境に対応した大深度地殻応力計測技術

特徴・独自性

CO2の地中貯留、深海底面下にあるメタンハイドレート層からのメタンガス生産、地熱エネルギー抽出などのフロンティア地殻工学、さらには、原子力発電所の耐震設計等への応用を目的として、対象地層に作用する地殻応力を孔井を使って定量的に評価するための方法を開発している。これによれば、地表面ないし海表面からキロメートル級の深度、高温環境さらには固結のみならず未固結岩体への適用が可能である。特にBABHYと名付けた方式については、800 mという実用深度での適用実験に成功した。また、この業績に対して、国内岩の力学連合会論文賞、米国岩石力学協会論文賞などを受賞した。これらの技術を産業界で活用したい企業や団体との共同研究を希望する。

流体科学研究所 附属未到エネルギー研究センター 地殻環境エネルギー研究分野
伊藤 高敏 教授 工学博士
ITO Takatoshi Professor

Bayesian Optimization

全てを最適化する Optimal Society

前の画像
次の画像
特徴・独自性

量子アニーリングと呼ばれる最適化技術を世界でいち早く産業化に向けて、その限界を突破する基礎技術、複数の企業との応用可能性の探索に取り掛かっている。
その手法の優位性は、一度最適化したい目標を描くコスト関数を定式化するだけで利用できる点だが、我々はさらに最適化しやすい形、学習による逐次最適化、ブラックボックス最適化など、手法にとどまらない展開をしている。
特に自動運転、工場内の物流、災害時の避難誘導へ応用展開中である。

産学連携の可能性(想定される用途・業界)

各種車両の自動運転、災害時の避難経路誘導などの経路探索問題、工程スケジューリングや多大な組合せ問題への応用。
各業界における組合せ最適化問題への課題解決方法を提供可能。
( 交通・流通、製造、材料、創薬等)

大学院情報科学研究科 情報基礎科学専攻 情報応用数理学講座 数理情報学分野
大関 真之 教授 博士(理学)
OHZEKI Masayuki Professor

Beyond 5G

グローバルネットワークを支える光通信技術

特徴・独自性

本研究室では、光時分割多重方式による1 チャネルあたりTbit/s級の超高速光伝送、QAM と呼ばれるデジタルコヒーレント光伝送、ならびにそれらを融合した超高速・高効率光伝送技術の研究開発を進めています。また、デジタルコヒーレント伝送のアクセスネットワークおよびモバイルフロントホールへの展開と、光通信と無線通信とを同じ電磁波として融合する新領域の開発を目指しています。
産学連携が可能な分野としては、超高速光伝送、コヒーレント光通信、光増幅器、新型光ファイバ、ファイバレーザ、光ファイバ計測等の技術分野があります。現在、NICT、AIST 等の研究機関をはじめ、光ファイバ、光学材料、光部品、測定器等のメーカ、ならびに通信キャリア関係の企業と連携を行っています。最近では、Beyond 5G を目指して、光無線融合型超高速アクセスネットワークの実現に関心を持っています。

電気通信研究所 ブロードバンド工学研究部門 超高速光通信研究室
廣岡 俊彦 教授 博士(工学)
HIROOKA Toshihiko Professor

biofilm

歯科用抗菌性チタン合金の可能性

前の画像
次の画像
特徴・独自性

従来の歯科材料開発は生体適合性や機械的性質に重きが置かれてきたが、抗菌性も重要と考えられる。特に歯科インプラントのように生体内外にまたがって用いられる場合に、術後の予後を大きく向上できると思われる。本研究では、チタンの機械加工性と機械的性質の向上を目的として開発したTi-Ag 合金について、歯科用抗菌性チタン合金の可能性を探った。その結果、Ti-Ag合金は、㈰表面へのバイオフィルムの付着を抑制することで、抗菌性を示した。㈪擬似体液中で表面に自然にリン酸カルシウムを形成し、骨伝導能良好と考えられた。㈫純チタンと同等の耐食性を示した。以上のことから、Ti-Ag合金は、生体にやさしく細菌付着に抵抗する新材料として歯科のみならず医学全般に大きく貢献すると期待される。本研究に関して興味のある企業や団体と共同研究を希望する。

大学院歯学研究科・歯学部 歯科学専攻 リハビリテーション歯学講座 歯科生体材料学分野
高橋 正敏 助教 博士(歯学)
TAKAHASHI Masatoshi Assistant Professor

biomaterial

歯科用抗菌性チタン合金の可能性

前の画像
次の画像
特徴・独自性

従来の歯科材料開発は生体適合性や機械的性質に重きが置かれてきたが、抗菌性も重要と考えられる。特に歯科インプラントのように生体内外にまたがって用いられる場合に、術後の予後を大きく向上できると思われる。本研究では、チタンの機械加工性と機械的性質の向上を目的として開発したTi-Ag 合金について、歯科用抗菌性チタン合金の可能性を探った。その結果、Ti-Ag合金は、㈰表面へのバイオフィルムの付着を抑制することで、抗菌性を示した。㈪擬似体液中で表面に自然にリン酸カルシウムを形成し、骨伝導能良好と考えられた。㈫純チタンと同等の耐食性を示した。以上のことから、Ti-Ag合金は、生体にやさしく細菌付着に抵抗する新材料として歯科のみならず医学全般に大きく貢献すると期待される。本研究に関して興味のある企業や団体と共同研究を希望する。

大学院歯学研究科・歯学部 歯科学専攻 リハビリテーション歯学講座 歯科生体材料学分野
高橋 正敏 助教 博士(歯学)
TAKAHASHI Masatoshi Assistant Professor

Brain Health Science

脳機能および精神的健康感の維持向上法開発研究

特徴・独自性

スマート・エイジング国際共同研究センター(通称SAIRC)は、国際的な研究拠点として、超高齢社会における新たな統合的加齢科学分野を切り開き、世界を先導するスマート・エイジング研究を通じて、持続可能型高度成熟社会の形成に寄与するため、文系・理系に拘らない架橋融合的研究、国際共同研究、産学連携研究などを展開します。
脳機能イメージング及び実験心理学的手法を核としながら、心を豊かに穏やかに加齢するための方法論的研究を、脳を直接研究対象とした脳科学研究、認知機能向上法開発のための認知心理学研究、認知症予防、メンタルヘルスを対象とした医学的研究、こころや死生観までを対象とした哲学・心理学研究・倫理学研究などを融合して推進します。
スマート・エイジング研究に関する共同研究を募集しますし、学術指導も積極的に行います。

加齢医学研究所 脳科学研究部門 応用脳科学研究分野
川島 隆太 教授 医学博士
KAWASHIMA Ryuta Professor

C

CAD/CAM

CAD/CAM応用に向けた歯列形態と咬合関係の高精度計測

前の画像
次の画像
特徴・独自性

CAD/CAMによる歯科補綴装置の調製が実現されて久しいが、寸法精度は無調整で口腔に装着可能な程度に遠く及ばない。印象採得時の開口により顎骨や歯列が変形し、咬合関係に関するCADデータの精度が低下するためである。本技術は咬頭嵌合位のチェックバイト形状を用いて個々の歯冠形態を再配置し、咬合時の歯列形態や咬合状態を再現するもので、補綴装置が無調整で装着できる精度(0.04mm)を実現した。

産学連携の可能性(想定される用途・業界)

本法独自のチェックバイト法を現行の精密印象法もしくは光学印象法と併用するもので、種々の商用CADシステムに容易に応用可能である。高精度商用システム開発に向け、歯科関連企業との連携を希望する。

大学院歯学研究科・歯学部 歯科学専攻 リハビリテーション歯学講座 加齢歯科学分野
服部 佳功 教授 歯学博士
HATTORI Yoshinori Professor