東北大学 研究シーズ集

LANGUAGE

「さ」行のキーワード 440ワード

信頼性と安全性

熱影響・相変態が生じない革新的補修・厚膜コーティング技術

前の画像
次の画像
特徴・独自性

コールドスプレー法は、金属粒子を溶融することなく固相状態のまま高速ガス流と共に基材へ衝突させ、成膜する手法です。本法は成膜時の相変態や熱影響の無い皮膜を得ることが特徴であり、これを用いた革新的な補修技術並びにコーティング技術の確立と得られた付着層の信頼性評価を実施しています。また、付着メカニズムおよび得られた皮膜の健全性を評価する目的で、ミクロ/ナノ組織観察および界面強度評価等を実施しています。

産学連携の可能性(想定される用途・業界)

金属材料のみならず、最近では一部のセラミックスやポリマーの成膜が可能になっております。構造材料としてだけではなく、機能性材料の創製を含めた多方面の企業や団体との連携が可能です。

工学研究科 附属エネルギー安全科学国際研究センター
小川 和洋 教授 博士(工学)
OGAWA, Kazuhiro Professor

心理学

犯罪予防の促進要因の検討

前の画像
次の画像
特徴・独自性

犯罪者は誰を狙い、どこで犯行に及ぶのでしょうか。また、犯罪の被害に遭わないようにするためには、我々はどのようなことを心掛け、どのような場所を避けると良いのでしょうか。あるいは、環境を整えることで犯罪を防ぐことは可能なのでしょうか。こうした点を心理学的な手法を用いて研究し、犯罪からの安全や安心を目指すための方策を考えています。

産学連携の可能性(想定される用途・業界)

犯罪からの安全や安心だけではなく、社会全般の安全・安心を提供するような様々な業界との産学連携を想定しています。

文学研究科・心理学研究室
荒井 崇史 准教授 博士(心理学)
ARAI, Takashi Associate Professor

心理物理学

実験心理学の原理から人間の行動を理解する

前の画像
次の画像
特徴・独自性

人の行動情報をセンシングし、人の意図や心身状態、人間関係を読み取ろうとする動きが進んでいます。このような状況を踏まえ、本研究室では、視線計測技術などを用いた実験心理学的手法によって人の身体行動に内在する心の理解に関する認知機能の解明に取り組んでいます。

産学連携の可能性(想定される用途・業界)

私たちは、日常の中で、極めて効率的な身体行動を様々な状況で柔軟かつ容易に実現していますが、なぜこのようなことが可能なのでしょうか? この問題は、認知科学、神経科学、リハビリテーション医学、スポーツ科学、ロボット工学などの様々な研究分野で取り組まれている重要な問題の一つです。 効率的な身体行動の実現には、目に見える「物理的な身体」ではなく、目に見えない「心の中の身体」(自己身体の気づき)が深く関与することを見出しており、「心の中の身体」のメカニズムと機能的役割の解明を進めています。

情報科学研究科
松宮 一道 教授 博士(工学)
MATSUMIYA, Kazumichi Professor

スーパーコンピュータ

スーパーコンピュータシステム設計とその応用に関する研究

前の画像
次の画像
特徴・独自性

次世代超高性能スーパーコンピュータシステムを実現するハードウェアおよびシステムソフトウェアの要素技術の確立と、スーパーコンピュータシステムの卓越した情報処理能力を最大限に引き出せる高性能シミュレーション技術について研究を進めている。具体的には、3次元デバイスや不揮発メモリなど先進デバイス技術を活用した低消費電力、高メモリバンド幅スーパーコンピュータシステム設計とその利用技術の開発に取り組んでいる。

産学連携の可能性(想定される用途・業界)

スーパーコンピュータ設計とその応用に関する産学連携研究を進めているが、ものづくりを支えるスーパーコンピュータ向けシミュレーションコードの高度化、高速化を必要とする企業との産学共同研究も可能である。

情報科学研究科
小林 広明 教授 工学博士
KOBAYASHI, Hiroaki Professor

大規模高度シミュレーションを実現するスーパーコンピュータ活用技術

前の画像
次の画像
特徴・独自性

現代のスーパーコンピュータは大規模化・複雑化しており、その性能を引き出すのは容易ではありません。ハードウェアとソフトウェアのそれぞれの事情で生じる課題を十分に把握したうえで適切にプログラムを作成する必要があり、職人的な技能や専門的な知識が求められます。当研究室では、実際にスーパーコンピュータを運用しながら、現場で起こる実用上の課題を踏まえて未来のスーパーコンピュータのシステムを設計・創造し、その活用のために必要なシステムソフトウェアを研究開発しています。また、より大規模で高度なシミュレーションを実現するため、最先端ハードウェア/ソフトウェア技術の活用方法についても常に興味を持って取り組んでいます。

産学連携の可能性(想定される用途・業界)

スーパーコンピュータの活用による大規模シミュレーションを実現するために、スパコン利用開始から並列化・高速化までを一貫して支援することができます。これまでにも、スパコンセンターとして多数のシミュレーションコードの並列化、高速化支援の実績があり、さらには大規模な科学技術計算ソフトウェア開発の生産性向上、効率化に関しても共同研究することができます。

サイバーサイエンスセンター
滝沢 寛之 教授 博士(情報科学)
TAKIZAWA, Hiroyuki Professor

スーパーコンピュータ応用

スーパーコンピュータシステム設計とその応用に関する研究

前の画像
次の画像
特徴・独自性

次世代超高性能スーパーコンピュータシステムを実現するハードウェアおよびシステムソフトウェアの要素技術の確立と、スーパーコンピュータシステムの卓越した情報処理能力を最大限に引き出せる高性能シミュレーション技術について研究を進めている。具体的には、3次元デバイスや不揮発メモリなど先進デバイス技術を活用した低消費電力、高メモリバンド幅スーパーコンピュータシステム設計とその利用技術の開発に取り組んでいる。

産学連携の可能性(想定される用途・業界)

スーパーコンピュータ設計とその応用に関する産学連携研究を進めているが、ものづくりを支えるスーパーコンピュータ向けシミュレーションコードの高度化、高速化を必要とする企業との産学共同研究も可能である。

情報科学研究科
小林 広明 教授 工学博士
KOBAYASHI, Hiroaki Professor

スーパービタミンE

スーパービタミンEトコトリエノールの高効率回収技術

前の画像
次の画像
特徴・独自性

本技術は、分子蒸留を一切行わないため熱安定性の低いトコトリエノールを分解なしに100% 回収できる、ビタミンE 類(トコトリエノールとトコフェロール)を選択的に樹脂に保持できるため不純物混入量が少なく高純度で回収できる、ビタミンE 類の回収と同時に遊離脂肪酸とトリグリセリドを何れも転化率100% で脂肪酸エステルに変換できる、樹脂充填層に溶液を供給するだけの簡便な操作で連続操作が可能である、という特長を持つ。

産学連携の可能性(想定される用途・業界)

抗癌作用が注目されているトコトリエノールを医薬品や食品添加物として利用したい企業、原料ビタミンE濃度が低くても選択的に完全回収できるため、スカム油からのビタミンE回収率向上を目指す企業、との連携可能。

工学研究科
北川 尚美 教授 博士(工学)
SHIBASAKI-KITAKAWA, Naomi Professor

膵β細胞

糖尿病治療にむけた臓器間神経ネットワーク調節デバイスの開発

前の画像
次の画像
特徴・独自性

糖尿病患者は種々の合併症を惹き起こし、失明や血液透析などの主要な原因となっているなど、社会的に大きな問題となっている。1 型のみならず2 型の糖尿病でも膵β細胞の数が減少していることが示され、膵β細胞を体内で再生させることができれば、有望な糖尿病治療となる。再生治療といえば、iPSなどの未分化細胞を試験管内で増殖・分化させ移植する研究が行われることが多いが、克服すべき問題も多い。
我々は、膵β細胞を増加させる肝臓からの神経ネットワークを発見し、膵β細胞を選択的に増殖させることに成功(図)し、モデル動物での糖尿病治療に成功した(Science 2008)。これらの神経ネットワークを人為的に制御することにより、患者体内で、あるべき場所において患者自身の細胞を増やして糖尿病の治療につなげるデバイスの開発を目指す。

医学系研究科 代謝疾患医学コアセンター
片桐 秀樹 教授 医学博士
KATAGIRI, Hideki Professor

水圧破砕

各種環境に対応した大深度地殻応力計測技術

特徴・独自性

CO2の地中貯留、深海底面下にあるメタンハイドレート層からのメタンガス生産、地熱エネルギー抽出などのフロンティア地殻工学、さらには、原子力発電所の耐震設計等への応用を目的として、対象地層に作用する地殻応力を孔井を使って定量的に評価するための方法を開発している。これによれば、地表面ないし海表面からキロメートル級の深度、高温環境さらには固結のみならず未固結岩体への適用が可能である。特にBABHYと名付けた方式については、800 mという実用深度での適用実験に成功した。また、この業績に対して、国内岩の力学連合会論文賞、米国岩石力学協会論文賞などを受賞した。これらの技術を産業界で活用したい企業や団体との共同研究を希望する。

流体科学研究所・複雑系流動研究部門・大規模環境流動研究分野
伊藤 高敏 教授 工学博士
ITO, Takatoshi Professor

水圏生物

水産生物における遺伝的多様性モニタリングシステムの構築

前の画像
次の画像
特徴・独自性

遺伝的多様性の維持は、水圏生物の持続的利用や保全を図る上で重要なポイントです。本研究は、DNA分析と集団遺伝学的な解析を主なツールとして、1)自然集団の遺伝的構造や系統地理を明らかにして保全方策を提言し、2)栽培漁業の対象となっている魚介類について、放流種苗の遺伝的特徴や海域での種苗の生残率または再生産への寄与度を明らかにすることによって、より良い放流方法の確立に貢献することを目指しています。

産学連携の可能性(想定される用途・業界)

海洋や河川・湖沼の生態系の現況調査においては、種数や個体数だけではなく遺伝的多様性についてもモニタリングしておくことの重要性が認識されつつあります。主に分析手法や解析方法についての学術指導や共同研究を行う準備があります。

農学研究科
池田 実 准教授 博士(農学)
IKEDA, Minoru Associate Professor

髄鞘

ヒト間葉系細胞からのシュワン細胞誘導と脊髄損傷、脱髄性疾患への応用

前の画像
次の画像
特徴・独自性

骨髄や臍帯由来の細胞は自己および他家移植ですでに臨床応用されており、バンクが設立されている、容易に培養可能である、腫瘍形成が無く安全性が担保されているなどの利点がある。これらの組織から分化能力の高い間葉系幹細胞を得て、神経再生を促し機能の回復をもたらすことのできるシュワン細胞を極めて高い誘導効率で作製する技術を開発した。骨髄あるいは臍帯から数週間で1000 万個ほどの間葉系幹細胞が樹立可能である。特定のサイトカインの組み合わせによって97%前後の高い効率で末梢性グリアであるシュワン細胞を短期間で誘導可能である。また末梢神経損傷、脊髄損傷において有効性が確認されている(Eur, J. Neurosci 2001; J.Neurosurg, 2004, J. Neuropathol.Exp. Neurol, 2005, BiochemBiophys Res Commun, 2007;Tissue Eng., 2011)。この方法は霊長類を用いた1年にわたる前臨床試験で安全性と有効性が確認されている(Exp. Neurol., 2010)。

産学連携の可能性(想定される用途・業界)

誘導されたシュワン細胞は傷害を受けた末梢・中枢神経組織に移植すると切断されたり損傷を受けた神経線維の再伸長を促すだけでなく、髄鞘(ミエリン)を再形成し跳躍伝導の回復をもたらすことを確認している。従って事故や怪我による神経断裂などの損傷だけでなく、神経変性疾患や脱髄性疾患においても有効性があると期待できる。この技術を医療や産業で活用したい企業や団体との共同研究を希望する。

医学系研究科
出澤 真理 教授 医学博士
DEZAWA, Mari Professor

水素

エネルギー利用を目指した“水素化物”の基盤・応用研究

前の画像
次の画像
特徴・独自性

エネルギー利用を目指した“水素化物”の基盤・応用研究に取り組んでいます。主要なテーマは、燃料電池などの水素利用技術を支える高密度水素貯蔵材料の開発です。現在、軽量元素や特異なナノ構造を有する新たな錯体・合金・ペロブスカイト水素化物群を合成し、原子・電子構造解析なども駆使した多面的な研究を進めています。また、リチウム高速イオン伝導材料などの“水素化物”に関する広範な研究領域も開拓しています。

産学連携の可能性(想定される用途・業界)

水素利用・貯蔵システムや次世代二次電池などの基盤材料開発を通して、素材・電気・エネルギーなどに関する産業展開に貢献するとともに、関心をお持ちの企業・団体などへの学術指導も積極的に実施しています。

材料科学高等研究所/金属材料研究所
折茂 慎一 教授 博士(学術)
ORIMO, Shin-ichi Professor

高強度鋼の水素脆化

前の画像
次の画像
特徴・独自性

高強度鋼の水素脆化特性について、水素が高強度鋼の機械的特性に及ぼす影響と腐食反応による環境からの水素侵入の両面から研究に取り組んでいます。主な研究内容は、各種高強度鋼の水素脆化による破壊の機構解明や、電気化学的手法を用いた種々の環境における腐食に伴う水素の侵入挙動の検討、鋼中の水素可視化手法、水素脆化特性評価法の提案などです。

産学連携の可能性(想定される用途・業界)

高強度鋼材料の水素脆化特性とそれに及ぼす金属組織や水素トラップ物質の影響や、材料の特性や形状に応じた水素脆化評価法の提案、新規な水素可視化手法の開発など水素脆化分野での共同研究。

金属材料研究所
秋山 英二 教授 博士(理学)
AKIYAMA, Eiji Professor

水素エネルギー

サステナブル異分野融合型混相エネルギーシステムの創成

前の画像
次の画像
特徴・独自性

本研究分野では、超並列分散型コンピューティングと先端的光学計測の革新的融合研究に基づくマルチスケール先端混相流体解析手法の開発・体系化を目指している。さらに、高密度水素に代表される環境調和型エネルギーに直結した新しい混相流体システムとそれに伴うリスク科学の創成を目的とした基盤研究を推進している。特に、脱炭素P2P マルチグリッド型の相互補償を可能にする多相水素サプライチェーンの構築を目指している。

産学連携の可能性(想定される用途・業界)

P2P Hydrogen supply chain,Elastohydrodynamic lubrication,Supercomputing of Laser melting andsputter particle formation, High pressurediecast computing / Automotive industry,Additive manufacturing

流体科学研究所
石本 淳 教授 工学博士
ISHIMOTO, Jun Professor

水素化物

エネルギー利用を目指した“水素化物”の基盤・応用研究

前の画像
次の画像
特徴・独自性

エネルギー利用を目指した“水素化物”の基盤・応用研究に取り組んでいます。主要なテーマは、燃料電池などの水素利用技術を支える高密度水素貯蔵材料の開発です。現在、軽量元素や特異なナノ構造を有する新たな錯体・合金・ペロブスカイト水素化物群を合成し、原子・電子構造解析なども駆使した多面的な研究を進めています。また、リチウム高速イオン伝導材料などの“水素化物”に関する広範な研究領域も開拓しています。

産学連携の可能性(想定される用途・業界)

水素利用・貯蔵システムや次世代二次電池などの基盤材料開発を通して、素材・電気・エネルギーなどに関する産業展開に貢献するとともに、関心をお持ちの企業・団体などへの学術指導も積極的に実施しています。

材料科学高等研究所/金属材料研究所
折茂 慎一 教授 博士(学術)
ORIMO, Shin-ichi Professor

水素脆化

キャビテーションピーニング−泡で叩いて金属材料を強くする−

前の画像
次の画像
特徴・独自性

流体機械に致命的な損傷を与えるキャビテーション衝撃力を、逆転発想的に、金属材料の疲労強度向上に活用するキャビテーションピーニングを開発しました。また、表面層の亀裂発生・亀裂進展を評価するために荷重制御型平面曲げ式疲労試験機を開発し、キャビテーションピーニングにより下限界応力拡大係数範囲が1.9倍に向上することを実証しました。また、キャビテーションピーニングによる水素脆化抑止も実証しています。

産学連携の可能性(想定される用途・業界)

用途に応じた複数のキャビテーションピーニング装置がありますので、キャビテーションピーニングの実用化に向けた共同研究を実施する企業を求めています。

工学研究科
祖山 均 教授 工学博士
SOYAMA, Hitoshi Professor

高強度鋼の水素脆化

前の画像
次の画像
特徴・独自性

高強度鋼の水素脆化特性について、水素が高強度鋼の機械的特性に及ぼす影響と腐食反応による環境からの水素侵入の両面から研究に取り組んでいます。主な研究内容は、各種高強度鋼の水素脆化による破壊の機構解明や、電気化学的手法を用いた種々の環境における腐食に伴う水素の侵入挙動の検討、鋼中の水素可視化手法、水素脆化特性評価法の提案などです。

産学連携の可能性(想定される用途・業界)

高強度鋼材料の水素脆化特性とそれに及ぼす金属組織や水素トラップ物質の影響や、材料の特性や形状に応じた水素脆化評価法の提案、新規な水素可視化手法の開発など水素脆化分野での共同研究。

金属材料研究所
秋山 英二 教授 博士(理学)
AKIYAMA, Eiji Professor

水素製造

固体イオニクス材料のエネルギー変換・貯蔵・利用技術への応用

前の画像
次の画像
特徴・独自性

固体イオニクスを中心として高度なエネルギー変換を実現するための機能性材料の開発を行っている。燃料電池や蓄電池の高性能化のためには、高いイオン伝導度と化学的安定性を有するイオン導電体や混合導電体が必要とされ、これら材料を酸化物の欠陥化学や熱力学に基づき探索し、デバイスに応用している。これまでに酸素分離膜型水素製造システムや全固体リチウム電池を開発している。

産学連携の可能性(想定される用途・業界)

酸化物イオン・電子混合導電体は小型水素製造システムや燃料電池の電極材料、酸素吸蔵放出材料、純酸素の工業的利用と関連が深く、リチウム伝導体は発火の危険性のない全固体電池への応用が期待される。

工学研究科 知能デバイス材料学専攻
高村 仁 教授 博士(工学)
TAKAMURA, Hitoshi Professor

水素貯蔵

エネルギー利用を目指した“水素化物”の基盤・応用研究

前の画像
次の画像
特徴・独自性

エネルギー利用を目指した“水素化物”の基盤・応用研究に取り組んでいます。主要なテーマは、燃料電池などの水素利用技術を支える高密度水素貯蔵材料の開発です。現在、軽量元素や特異なナノ構造を有する新たな錯体・合金・ペロブスカイト水素化物群を合成し、原子・電子構造解析なども駆使した多面的な研究を進めています。また、リチウム高速イオン伝導材料などの“水素化物”に関する広範な研究領域も開拓しています。

産学連携の可能性(想定される用途・業界)

水素利用・貯蔵システムや次世代二次電池などの基盤材料開発を通して、素材・電気・エネルギーなどに関する産業展開に貢献するとともに、関心をお持ちの企業・団体などへの学術指導も積極的に実施しています。

材料科学高等研究所/金属材料研究所
折茂 慎一 教授 博士(学術)
ORIMO, Shin-ichi Professor

水素貯蔵材料

均一なナノ空間を反応場としたナノカーボン材料の合成

前の画像
次の画像
特徴・独自性

ナノレベルで構造を精密に制御したカーボン材料およびその複合体など、様々な新材料の開発を行っている。これまでに、直径と長さが均一であるカーボンナノチューブ、ゼオライトのような規則正しい細孔構造と世界最大の比表面積をもつ多孔性炭素、メソポーラスシリカなど無機多孔体の細孔表面をグラフェンシート数層で完璧に被覆した複合材料など画期的な材料の開発に成功している。

産学連携の可能性(想定される用途・業界)

電気二重層キャパシタ、リチウムイオン電池、水素貯蔵、燃料電池、バイオセンサー、薬剤輸送・遺伝子輸送や、様々な炭素および複合材料の開発、炭素の構造解析などが挙げられる。

多元物質科学研究所
京谷 隆 教授 工学博士
KYOTANI, Takashi Professor