- 特徴・独自性
-
- 分散が困難とされていた、カーボンナノチューブ(CNT) を配合したセラミック複合材料の開発に関して、CNT の剛性ならびに表面性状を制御することにより均一分散させたCNT/アルミナ複合材料の作製に成功した。さらに、無加圧焼結によりアルミナ単味の強度特性を大きく超える複合体を作製できている。これを背景に、試作したCNT/ アルミナ複合材料の機械・電気的特性の向上と実用化に向けた基礎研究を行っている。
- 実用化イメージ
-
トライボ応用、強度と耐摩耗性が要求される人口股関節等の生体材料、電気ひずみ効果を利用したマイクロアクチュエータ、数GHz 〜数10GHz 程度の周波数帯における電波吸収材料への応用展開が期待される。
研究者
未来科学技術共同研究センター
橋田 俊之
Toshiyuki Hashida
|
- 特徴・独自性
-
- 有機分子の集積によって構成されている分子性伝導体を中心に研究を進めています。分子で構成されている有機物質の特徴は“やわらかい”ことです。この特長から、近年、有機ELデバイスなどの軽量で“曲がる”エレクトロニクス材料として注目されています。当研究室では、このような分子性有機物質の基礎的物性( 金属- 超伝導- 絶縁体) の解明、新物性の開拓を目指しています。
- 分子性有機物質は、無機物質と比べて“やわらかく”大きく広がった分子軌道や電荷の分布、また分子自身の持つ構造自由度などのために、電荷- スピン- 分子格子- 分子内結合の間にゆるやかで大きな自由度を有しています。このナノ分子サイズの“やわらかい”複合的自由度と強く関係している超伝導から絶縁体までの多彩な電子状態がバルクな物性として現れます。このような分子性物質の特長をフルに活かして、電子物性物理の重要で興味ある問題にチャレンジしています。 このような研究に興味のある企業への学術指導を行なう用意があります。
- 実用化イメージ
-
研究者
金属材料研究所
佐々木 孝彦
Takahiko Sasaki
|
- 特徴・独自性
-
- 実用形状記憶合金ニチノールと同等の形状記憶および超弾性特性を有し、約2倍の加工性を持つCu-Al-Mn系形状記憶合金を開発しました。この合金はニチノールの数分の1のコストで作製することができ、形状記憶処理に金型が不要なため、線以外の複雑な形状への加工・成形が可能です。最近、この合金を利用して着脱容易な「巻き爪矯正具」を開発・製品化し、2011 年から販売を始めました。
- 実用化イメージ
-
直径や厚さが0.1 〜 20mm もの線、棒、板材でも6%以上の優れた超弾性が得られる技術を確立し、現在制震部材への応用研究を進めています。医療、建築にかかわらず本合金の特性を利用したい用途があったら是非ご連絡下さい。
研究者
大学院工学研究科
貝沼 亮介
Ryosuke Kainuma
|
- 特徴・独自性
-
- ナノ構造と光の相互作用から生じる新規光学現象を利用した超小型・高機能光デバイスの研究を行っています。また、ナノ光学素子を実用化する上で顕在している問題を克服する新たな製作技術の開発も行っています。
- 《主な研究テーマ》
- ■ 可動メタマテリアルによる光の動的制御
- ■ 微細周期構造を利用したカラーフィルタ
- ■ 表面原子自己拡散を利用した超平坦化技術
- ■ 超低損失シリコンナノフォトニクスの基礎研究
- 実用化イメージ
-
革新的光制御・センサデバイスの実現と社会実装を目指しています。「ナノフォトニクス、メタマテリアル、生物模倣光学」と「微細加工、光MEMS」の融合による光操作の未来技術と応用展開について研究しています。
研究者
大学院工学研究科
金森 義明
Yoshiaki Kanamori
|
- 特徴・独自性
-
- 私達の身のまわりには多くの排熱源が存在します。例えば、オフィス機器や電化製品は絶えず100℃以下の熱を発生し続けていますし、自動車からは500℃近傍の熱が排出されています。これらの排熱の大部分は有効利用されることなく、「廃熱」となっているのが現状です。当研究室では、これら種々の温度域で発生する廃熱から高効率で電気を発生することができる熱電発電材料の開発を推進しています。
- 実用化イメージ
-
電子機器メーカーや自動車関連メーカーとの共同研究はもとより、温泉の温水と冷水を巧みに利用した「温泉発電」実現のための自治体との連携、人間の体温からの発電を目指す衣料メーカーなど多岐にわたる連携を目指しています。
研究者
大学院工学研究科
宮﨑 讓
Yuzuru Miyazaki
|
- 特徴・独自性
-
- 相変化材料を用いた不揮発性相変化メモリ(PCRAM) が注目されている。現在、Ge-Sb-Te 系材料がPCRAMに使われているが、融点が高いためデータ書込み消費電力が高く、結晶化温度が低いため耐熱性に劣るという問題がある。我々は、融点が低く、かつ耐熱性に優れるGe-Cu-Te 系等の新規相変化材料の開発を行っており( 図1、2 )、材料の相変化機構や消費電力、データ書換え速度等の性能を検証している。
- 実用化イメージ
-
新規相変化材料は不揮発性メモリへの適用が想定されますが、この技術を活用したい、また興味がある企業や団体との共同研究を希望しております。
|
- 特徴・独自性
-
- 磁気工学を基礎とした材料開発ならびに応用技術を研究している。特に磁気の特徴であるワイヤレスを生かした新しいセンサやアクチュエータの開発を、最適な特性を有する材料の開発も含めて行っている。これまでにカプセル内視鏡の駆動技術や内視鏡手術支援用アクチュエータ、補助人工心臓用ワイヤレス駆動ポンプなど医用応用技術や、磁界センサやひずみセンサなど世界最高レベルの感度のセンシング技術、バッテリーレスワイヤレスの温度計測技術、位置検出(モーションキャプチャ)技術などの開発を行ってきた。また材料単独では、損失が極めて低い電磁鋼板の実現や、電気化学的手法を用いてナノスケールで構造を制御した磁性材料(陽極酸化磁性被膜材料)の開発等を行ってきている。
- 実用化イメージ
-
上記項目に興味のある企業・団体に対する技術指導・共同研究は随時受け付けている。加えて、磁気に関連する技術に関する広く一般的な技術指導の実績も数多く行っている。
研究者
電気通信研究所
石山 和志
Kazushi Ishiyama
|
- 特徴・独自性
-
- ナノポーラス金属は、緻密材に比べて桁違いに大きい表面積を有し、次世代高機能材料として応用が期待されている。その主な作製法として知られる水溶液による脱成分法は、微細・均一な多孔質構造の形成を可能にするが、その形成原理は腐食であり、標準電極電位の高い貴金属において多孔質材料の作製が可能であるが、卑金属では酸化されてしまう。本部門では金属溶湯による簡便な脱成分技術を新たに考案した。この技術によれば、貴・卑に依存せず純金属や合金を多孔質化することが可能で、かつ、無酸素脱成分工程であるために酸化も生じない。従って、これまで作製が困難であった数々の卑金属(Ti、 Ni、 Cr、 Mo、 Fe、Co 等)・半金属元素およびそれらの合金において、オープンセル型ナノポーラス金属材料の開発に成功した。
- 実用化イメージ
-
新規電極、触媒、フィルター等に実用が期待できるほか、Niなどの毒性元素を含有する生体金属材料表面からこれを除去する技術としても利用でき、関連企業・団体との共同研究・開発を強く希望する。
研究者
金属材料研究所
加藤 秀実
Hidemi Kato
|
- 特徴・独自性
-
- マイクロ波は化学反応の駆動力としても注目されています。材料プロセッシングにおいては、単なる省エネルギー加熱としての特徴のみならず、反応促進効果や非平衡反応の進行が認められ、新素材を生み出す手法として期待できます。当研究室では、ミリ波からセンチ波に至るマイクロ波を駆使し、雰囲気制御を必要としない簡便な窒化物コーティング法や、サーメット焼結などの粉末冶金技術、金属ナノ粒子合成法を開発しています。
- 実用化イメージ
-
マイクロ波を利用した窒化物コーティング法は、オンサイトかつ短時間の成膜を可能にし、歯科インプラント材や宝飾品、切削工具等、チタン合金や各種セラミックス、硬質材料などに適用できます。
研究者
役員
滝澤 博胤
Hirotsugu Takizawa
|
- 特徴・独自性
-
- 金属マイクロ・ナノ材料が持つ優れた物理的諸特性を有効に活用して新しい機能を創出するために、電流により発生するジュール熱を利用した極微細材料の溶接、切断手法を開発しています(図1)。2 本の極細線の先端同士を接触させた状態である範囲内の一定直流電流を付与することで、細線接触部を自発的に溶融、凝固させ、同部を溶接できることを見出しました。また当該手法を駆使して極微細材料のマニピュレーションも可能です。
- 実用化イメージ
-
素材としての金属極細線から新たな機能を創出できます(図2)。また極微細材料の物理的諸特性を評価する独自の試験技術も開発しており(図3)、これら技術を活用した産学連携が可能です。
研究者
大学院工学研究科
燈明 泰成
Hironori Tohmyoh
|
- 特徴・独自性
-
- オーステナイト系ステンレス鋼やニッケル合金は粒界劣化現象が永年の大きな問題である。当グループの開発した粒界工学制御プロセスは、通常ステンレス鋼の粒界腐食(図1、2)、溶接部腐食、応力腐食割れ、液体金属脆化、放射線損傷などに対する抵抗性を著しく向上させるとともに、高温クリープ破断寿命を顕著に延長(図3)させるなど、粒界劣化現象抑制による著しい特性改善を実現した。
- 実用化イメージ
-
この粒界工学制御技術により、金属材料の耐食性や高温寿命の向上が期待できることから、電力・化学プラント配管、高温高圧容器、食品加工機器などの製造業への適用が想定される。
研究者
大学院工学研究科
佐藤 裕
Yutaka Sato
|
- 特徴・独自性
-
- 超高密度磁気記録用読出しヘッドや不揮発性スピンメモリなど高機能なスピントロニクス素子を実現するため、高スピン偏極材料を用いた磁気抵抗素子における電気伝導に関する理論研究に取り組んでいます。また、磁化の熱ゆらぎに対する耐久性向上を目指して、垂直磁気材料を用いた磁気抵抗素子の研究にも着手しています。強磁性体と酸化物の界面での結晶構造を理論的に設計して、磁気抵抗性能を向上させるための指針を得ることに成功しています。経験的パラメタを必要としない第一原理計算手法は、スピントロニクス分野に限らず、多様な材料研究・開発の場において重要な役割を果たすものと確信しています。共同研究のご要望がございましたら、ご一報ください。
- 実用化イメージ
-
研究者
電気通信研究所
白井 正文
Masafumi Shirai
|
- 特徴・独自性
-
- 材料純化、結晶成長、結晶加工、電極形成、検出器製作を一貫して行い、化合物半導体を用いた放射線検出器の開発を行っている。特に化合物半導体の一つである臭化タリウム(TlBr)に着目し研究を行っている。TlBr検出器は非常に高い検出効率を持ち、PET やSPECT 等の核医学診断装置やガンマ線CT、産業用X線CT、コンプトンカメラ等への応用が可能である。
- 実用化イメージ
-
化合物半導体成長技術はシンチレーション結晶育成、X線フラットパネルセンサー用直接変換膜製作へ応用が可能である。これらの結晶成長・検出器製作技術を産業界で活用したい企業や団体との共同研究を希望する。
研究者
大学院工学研究科
人見 啓太朗
Keitaro Hitomi
|
- 特徴・独自性
-
- 超臨界水を反応場とする有機修飾ナノ粒子の合成技術を発明した。超臨界反応場では有機分子と金属塩水溶液が均一状態で反応し、水分子が酸/塩基触媒として働き、有機修飾金属塩ナノ粒子を合成できる。このハイブリッドナノ粒子は有機分子を表面に有するため、溶剤に高濃度分散させてナノフルイッド、ナノインクとしたり、高分子とハイブリッド化させて有機・無機材料の機能を併せ持つ材料を創成することができる。
- 実用化イメージ
-
窒化ホウ素の有機修飾ナノ粒子はポリマーに分散させて、高熱伝導材料として使用できる。また酸化チタン、酸化ジルコニウムの有機修飾ナノ粒子は、ポリマーなどに高濃度分散させることにより高屈折率レンズ製造に応用できる。また、高活性ナノ触媒としての利用も期待される。現在、本技術に基づいて、超臨界ナノ材料技術開発コンソーシアム(参加企業およそ80 社)が設立されており、産業への応用や国家プロジェクトの提案などを積極的に推進している。
研究者
高等研究機構材料科学高等研究所
阿尻 雅文
Tadafumi Ajiri
|
- 特徴・独自性
-
- 高分子材料とナノ粒子とのハイブリッド材料は、2つの異なる材料の機能を合わせ持つ今までにない材料として期待され、多くの研究開発が進められている。しかし、材料間の親和性が低く、多くの場合ハイブリッド化により、両方の機能が低下することが多く、相反機能を同時に達成することは不可能とされてきた。
- 当研究室では、高分子とナノ材料間の界面制御を最適に行う新たな超臨界技術により、相反する機能を合わせ持つ新たなハイブリッド材料の創製に成功した。
- 実用化イメージ
-
材料の例として ・ 透明、フレキシブル、高屈折率、易加工性 ・ 高熱伝導度、フレキシブル、密着性、絶縁性、易加工性等 といったハイブリッド材料創製に向けた研究開発を行っている。
研究者
高等研究機構材料科学高等研究所
阿尻 雅文
Tadafumi Ajiri
|
- 特徴・独自性
-
- ナノインプリント技術は、パターンサイズとデバイス面積を広範囲にカバーでき、産業界に向いた量産性に優れるナノファブリケーション法として注目されています。当研究グループは、単分子膜工学を推進し、界面機能分子制御の学理の追求と実学応用を進めています。離型分子層、密着分子層、偏在分子層を設計した光硬化性樹脂を研究し、ナノインプリントリソグラフィによる半導体、金属、無機酸化物の超微細加工に挑戦しています。
- 実用化イメージ
-
透明導電膜、光導波路、メタマテリアル等の先進光機能材料に関する研究成果を発表しました。材料、機械、マスク、デバイスメーカーと連携し、日本のものづくりの強化に貢献します。
研究者
多元物質科学研究所
中川 勝
Masaru Nakagawa
|
- 特徴・独自性
-
- 有機分子の設計自由度に着目した分子集合体の多重機能の構築および無機材料とのハイブリッド化を試みている。導電性・磁性・強誘電性の観点から、分子性材料の電子−スピン構造を設計し、その集合状態を制御する事で、マルチファンクショナルな分子性材料の開発を行っている。単結晶・柔粘性結晶・液晶・ゲル・LB膜など多様な分子集合体を研究対象とし、無機クラスターや金属ナノ粒子とのハイブリッド化を試みている。本研究に関して興味のある企業へ学術指導を行う用意がある。
- 実用化イメージ
-
研究者
多元物質科学研究所
芥川 智行
Tomoyuki Akutagawa
|
- 特徴・独自性
-
- 金属・無機系材料の創製と高温融体の熱物性計測に取り組んでいます。現在、環境、医療、バイオ、情報分野での幅広い応用が期待されている窒化物半導体について独自の発想に基づいた新たな結晶成長プロセスの開発を行っています。また、当研究室で開発した超高温熱物性計測システムを一般開放し、材料開発の数値シミュレーションに必要な比熱、熱伝導率や表面張力など種々の熱物性測定のニーズに応えています。
- 実用化イメージ
-
鉄鋼・金属系素材、半導体産業:結晶成長、溶接、鋳造、凝固などのプロセス開発 航空宇宙産業:ロケット・航空機用エンジンおよび構成部材の評価 エネルギー産業:原子炉・核融合炉用材料、発電タービン用材料の評価
研究者
多元物質科学研究所
福山 博之
Hiroyuki Fukuyama
|
- 特徴・独自性
-
- 半導体デバイスからなる電子製品は、半導体自体はもとより、半導体に接続する金属配線があって製品として動作する。金属配線に求められる課題は、半導体材料との良好な電気的コンタクト、相互拡散の防止、良好な密着性、および配線材料の低電気抵抗、耐腐食性、プロセス耐性などがある。本研究室では、種々のデバイスのニーズにあった配線材料の開発ならびにコストパフォーマンスを追求したプロセス技術を開発することによって、高性能かつ高信頼性の先端デバイス開発に貢献している。
- 実用化イメージ
-
Si半導体多層配線において拡散バリア層を自己形成するCu合金配線、IGZO 酸化物半導体に対して熱反応によるキャリアドーピングを行えるCu 合金配線、SiC パワー半導体に対して優れた熱・機械的信頼性と良好なコンタクト特性を示すNb 合金配線、タッチパネル用途などのITO透明導電膜に対するCu 合金配線、太陽電池におけるCu ペースト配線、などがある。
研究者
未来科学技術共同研究センター
小池 淳一
Junichi Koike
|
- 概要
- 従来技術との比較
- 特徴・独自性
-
- 固体イオニクスを中心として高度なエネルギー変換を実現するための機能性材料の開発を行っている。燃料電池や蓄電池の高性能化のためには、高いイオン伝導度と化学的安定性を有するイオン導電体や混合導電体が必要とされ、これら材料を酸化物の欠陥化学や熱力学に基づき探索し、デバイスに応用している。これまでに酸素分離膜型水素製造システムや全固体リチウム電池を開発している。
- 実用化イメージ
-
酸化物イオン・電子混合導電体は小型水素製造システムや燃料電池の電極材料、酸素吸蔵放出材料、純酸素の工業的利用と関連が深く、リチウム伝導体は発火の危険性のない全固体電池への応用が期待される。
研究者
大学院工学研究科
髙村 仁
Hitoshi Takamura
|