行のキーワード 673ワード

材料

構造制御による環境発電材料の高性能化と応用展開

前の画像
次の画像
特徴・独自性
  • IoT 社会の実現に向けて、充電を必要としない小型センサの開発は不可欠である。当研究室では、独自装置を用いた材料創製技術、理論に基づいた数値解析技術を駆使し、材料の複合化によって、身の回りの未利用エネルギー(振動、超音波、光エネルギーなど) を電気エネルギーとして回収可能な環境発電材料の創製とさらなる高性能化を得意としている。
実用化イメージ

環境発電特性および関連特性の付与による、既存の機械やデバイスのさらなる高性能化、新機能追加から生じる付加価値向上を目指している企業等との共同研究を希望する。

研究者

大学院環境科学研究科

成田 史生  

Fumio Narita

ナノスケール超微細構造を利用した超小型・高機能光デバイスの開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • ナノ構造と光の相互作用から生じる新規光学現象を利用した超小型・高機能光デバイスの研究を行っています。また、ナノ光学素子を実用化する上で顕在している問題を克服する新たな製作技術の開発も行っています。
  • 《主な研究テーマ》
  • ■ 可動メタマテリアルによる光の動的制御
  • ■ 微細周期構造を利用したカラーフィルタ
  • ■ 表面原子自己拡散を利用した超平坦化技術
  • ■ 超低損失シリコンナノフォトニクスの基礎研究
実用化イメージ

革新的光制御・センサデバイスの実現と社会実装を目指しています。「ナノフォトニクス、メタマテリアル、生物模倣光学」と「微細加工、光MEMS」の融合による光操作の未来技術と応用展開について研究しています。

研究者

大学院工学研究科

金森 義明  

Yoshiaki Kanamori

情報の発信・受信やエネルギー供給を豊かにする機能性セラミックス材料の開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 反射防止薄膜、電池、電源、メモリなどの高性能化・高耐久化、ひいては、豊かな情報の発信・受信や持続的なエネルギー供給に寄与する機能性セラミックスを新規開発しています。電子論と熱力学を中心に据えたマテリアルデザインにより、高屈折率な透明材料(図1)や、電気的絶縁性ながらも濃い黒色を呈する色材(図2)などを開発してきました。独自に構築したイオンビーム支援パルスレーザー堆積装置による酸窒化物や酸水素化物の合成や、セラミックスのレーザー焼結技術(図3)の開発にも取り組んでいます。
実用化イメージ

研究成果のアウトプット先の一例に、光学的機能膜(反射防止膜、透明電極、太陽電池、LiDAR 用光フィルタなど)、二次電池、固体酸化物型燃料電池および水蒸気電解式水素製造装置、メモリ関係(抵抗変化、相変化)があります。

研究者

大学院工学研究科

石井 暁大  

Akihiro Ishii

レアメタルフリー高性能蓄電池の先端ナノテクノロジー

前の画像
次の画像
特徴・独自性
  • 高容量・高出力・高安全性・低コストの次世代蓄電エネルギーデバイスであるポストリチウムイオン電池を実現するために、単原子層物質グラフェン、金属硫化物ナノシート、ナノ結晶活物質、ナノ粒子、ナノ多孔材料などの新しい機能材料の開拓とデバイス応用を研究する。全固体型リチウム二次電池、マグネシウム電池、燃料電池、大容量キャパシタ、ウェアラブル電池などの高性能電極材料・デバイス創製の精密化学プロセスを研究する。
実用化イメージ

ポストリチウムイオン電池および革新的エネルギー材料開発を研究シーズとして素材産業、電池メーカー、電気自動車企業、スマートグリッドや再生可能エネルギー等の電力ビジネス企業との共同研究を積極的に推進する。

研究者

多元物質科学研究所

本間 格  

Itaru Homma

環境にやさしい太陽電池のキーマテリアル:SnS

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 硫化スズ(SnS)は、安価で安全な元素からなる太陽電池材料です。SnS 太陽光パネルの原材料費は、例えばCIGS 太陽電池の1/14です。SnS は通常p 型伝導性を示すため、これまではp 型SnS とn 型CdS 等のヘテロ接合によって太陽電池が研究されてきましたが、変換効率は5% に留まっていました。独自に開発したプロセスにより、n 型SnS 薄膜を世界で初めて実現し、SnS 太陽電池の高効率化への道を拓きました。
実用化イメージ

環境にやさしい薄膜太陽電池への応用や、赤外波長領域で用いるフォトダイオードへの応用が期待できます。実用化に向けた観点の研究に興味ある企業様との協働を期待しています。

研究者

多元物質科学研究所

鈴木 一誓  

Issei Suzuki

形状制約のない力学的異方性材料の簡易な弾性定数計測手法の開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 本弾性定数計測手法は、任意の弾性定数を入力値に用いて共鳴振動解析を行い、振動実験から得られた共鳴振動数と各振動様式が解析結果と一致する入力弾性定数を逆解析的に求める手法です。材料種、材料形態および計測環境の制約を伴わない計測手法の構築を目指しており、金属材料・セラミックス材料・高分子材料・複合材料、顕微鏡サイズ材料・薄膜材料・異種接合材料および高温環境下なども研究対象としています。
実用化イメージ

本研究を発展させるためには、企業の課題と我々の課題との間のギャップを埋める必要があり、知識の相互補完なしでは目的を達成することができない研究開発テーマです。是非、抱えている課題や困難をお教えください。

研究者

大学院工学研究科

山本 剛  

Go Yamamoto

リチウムイオン内包フラーレンを用いた二次電池の開発

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • リチウムイオン内包フラーレン(Li+@C60)を用いた二次電池を開発しています。その中でもLi+@C60をカチオンとしたイオン液体を電気二重層キャパシタ(EDLC) の電解質として用いた[Li+@C60]・EDLCは、広い温度域で高い運動性を示す球形のC60殻内に安定に閉じ込めたLi+ を用いるため、イオン液体中でも高密度で高速蓄電が可能で、高い安全性が確認されています。
実用化イメージ

宇宙などの極限環境下で使用可能な二次電池としての応用が期待されます。さらに、Li+@C60を用いた全固体型二次電池への展開も可能で、飛躍的な蓄電密度の向上が達成できます。

研究者

大学院理学研究科

權 垠相  

Eunsang Kwon

高い空隙率をもつ多孔質SiCを簡便に作製

概要

炭化ケイ素のフラクタル多孔体
https://www.t-technoarch.co.jp/data/anken/T21-019.pdf

従来技術との比較

SiCの多孔質化には従来微細加工などが用いられてきた。本発明はSiCフラクタル多孔体をバルクで合成する手法を提供する。

特徴・独自性
  • Mg蒸気でシリコーン樹脂を還元することで、SiC多孔体を形成
  • フラクタル構造を持つ階層的な多孔体が形成される
  • 従来の微細加工では困難だった表面等に形成が可能
実用化イメージ

耐熱性のあるファインセラミクス多孔体として利用可能。

研究者

高等研究機構材料科学高等研究所

藪 浩  

Hiroshi Yabu

カルコゲナイド系材料のエレクトロニクス応用

前の画像
次の画像
概要

現代が情報化社会と呼ばれて久しいですが、昨今は、AI の普及により大量のデータ処理や演算の需要が益々高まっています。これらは消費電力の指数関数的な増加に直結しています。これまではSi が半導体デバイスの中心でしたが、近い将来、微細化だけによる高性能化、低消費電力化には物理的な限界が見え始めつつあります。そこで、カルコゲナイドと呼ばれる周期表の第16族元素を含んだ全く新しい材料によって、既存のSi 半導体を凌駕する電子デバイスの実現を目指して研究を行なっています。トランジスタやメモリといった現代社会に欠かせない電子デバイスに、新材料の切り口で挑戦をしています。また、東北大学青葉山新キャンパス内で稼働を開始した、次世代放射光施設「ナノテラス」を用いた実験にも取り組んでおり、世界最先端の研究環境で高機能の材料開発を進めています。

従来技術との比較

カルコゲナイド材料薄膜は、量産化とも相性の良いスパッタリング法にて作製しています。これにより、材料の基礎研究と実用化との障壁を大きく下げることができます。また、従来全く検討されてこなかった材料の組み合わせや、自然界には存在しない準安定な薄膜材料の創製など、これまでにない手法での材料技術の高度化を目指しています。さらに、放射光実験や第一原理計算も取り込みながら、材料の理解も同時に進めています。

特徴・独自性
  • 新規カルコゲナイド材料による電子デバイスの高機能・低消費電力化
  • 実用化を見据えた新規電子材料設計・開発
  • 放射光や理論計算による電子状態の解明
実用化イメージ

半導体は、デバイスメーカーだけでなく、半導体製造装置メーカー、半導体素材・材料メーカーと非常に裾野の広い産業です。サプライチェーンの安定化が望まれる中、日本発の新材料技術として社会実装を目指します。

研究者

グリーン未来創造機構

齊藤 雄太  

Yuta Saito

NanoTerasuを用いた電子輸送現象可視化による機能性電子材料の革新

概要

結晶を原子層レベルまで薄くすると表面近傍に新奇な電子状態が発現し、量子的な効果が顕著に現れ、結晶単体では見られない高移動度電子やスピン偏極電子、金属絶縁体転移の発現など新奇な物性を示すことが多くあります。こうした特異物性を極薄膜や表面で実現し、制御・解明する研究を行っています。高輝度かつ高エネルギー分解能の放射光を駆使することで、新奇な物理現象を正確に捉えることが可能です。

従来技術との比較

放射光源を利用した表面解析の手法は、実験室光源と比較してより多くの情報を得る・より微細な試料の測定を行うことが可能です。

特徴・独自性
  • 世界最高性能を有するNanoTerasuとこれまで開発してきたin-situ ARPESマイクロ多端子電子輸送測定システムや計算科学を融合し、電子の運動を正確に記述し新たなナノ材料探索を実施
  • Nanoterasuを用いたin-situ ARPES手法(角度分解光電子分光(Angle-Resolved Photoemission Spectroscopy : ARPES))による、成膜環境下で物質の表面状態の詳細な解析が可能
  • 放射光施設での測定に資する原子層レベルの極薄膜試料の作成が可能
実用化イメージ

放射光を用い新奇低次元物性の解明や光電子分光・多端子計測を合わせた革新的電子輸送現象解明手法開発による機能性表面・極薄膜探索を行っています。電子挙動の理解は革新的な半導体や加工技術の進歩に繋がります。

研究者

国際放射光イノベーション・スマート研究センター

湯川 龍  

Ryu Yukawa

材料設計

第一原理計算に基づく新材料・素子機能の理論設計

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • 超高密度磁気記録用読出しヘッドや不揮発性スピンメモリなど高機能なスピントロニクス素子を実現するため、高スピン偏極材料を用いた磁気抵抗素子における電気伝導に関する理論研究に取り組んでいます。また、磁化の熱ゆらぎに対する耐久性向上を目指して、垂直磁気材料を用いた磁気抵抗素子の研究にも着手しています。強磁性体と酸化物の界面での結晶構造を理論的に設計して、磁気抵抗性能を向上させるための指針を得ることに成功しています。経験的パラメタを必要としない第一原理計算手法は、スピントロニクス分野に限らず、多様な材料研究・開発の場において重要な役割を果たすものと確信しています。共同研究のご要望がございましたら、ご一報いただければと思います。
実用化イメージ

研究者

電気通信研究所

白井 正文  

Masafumi Shirai

エネルギー・環境問題の解決に向けたマルチフィジックス・マルチスケールシミュレーションによる材料設計

前の画像
次の画像
概要

従来技術との比較

特徴・独自性
  • エネルギー・環境問題の解決には、燃料電池、リチウムイオン電池、トライボロジーなどの多様な研究分野において、高機能・高性能材料の開発が必須です。久保研究室では、ナノスケールにおける化学反応とマクロスケールの多様な物理現象が複雑に絡み合ったマルチフィジックス・マルチスケール現象を解明可能な量子論に基づくシミュレータを世界に先駆けて開発することで、理論に基づく高精度な材料設計を推進しています。
実用化イメージ

久保研究室で開発したマルチフィジックス・マルチスケールシミュレーション技術の活用により、自動車、機械、エレクトロニクス、材料、金属、化学等の多様な企業における材料開発を高精度な理論に基づき促進します。

研究者

金属材料研究所

久保 百司  

Momoji Kubo

材料プロセッシング

マイクロ波を利用した機能無機材料プロセッシング

前の画像
次の画像
特徴・独自性
  • マイクロ波は化学反応の駆動力としても注目されています。材料プロセッシングにおいては、単なる省エネルギー加熱としての特徴のみならず、反応促進効果や非平衡反応の進行が認められ、新素材を生み出す手法として期待できます。当研究室では、ミリ波からセンチ波に至るマイクロ波を駆使し、雰囲気制御を必要としない簡便な窒化物コーティング法や、サーメット焼結などの粉末冶金技術、金属ナノ粒子合成法を開発しています。
実用化イメージ

マイクロ波を利用した窒化物コーティング法は、オンサイトかつ短時間の成膜を可能にし、歯科インプラント材や宝飾品、切削工具等、チタン合金や各種セラミックス、硬質材料などに適用できます。

研究者

役員

滝澤 博胤  

Hirotsugu Takizawa

高温反応場を用いた機能材料の創製と熱物性計測法の開発

前の画像
次の画像
特徴・独自性
  • 金属・無機系材料の創製と高温融体の熱物性計測に取り組んでいます。現在、環境、医療、バイオ、情報分野での幅広い応用が期待されている窒化物半導体について独自の発想に基づいた新たな結晶成長プロセスの開発を行っています。また、当研究室で開発した超高温熱物性計測システムを一般開放し、材料開発の数値シミュレーションに必要な比熱、熱伝導率や表面張力など種々の熱物性測定のニーズに応えています。
実用化イメージ

鉄鋼・金属系素材、半導体産業:結晶成長、溶接、鋳造、凝固などのプロセス開発
 航空宇宙産業:ロケット・航空機用エンジンおよび構成部材の評価
 エネルギー産業:原子炉・核融合炉用材料、発電タービン用材料の評価

研究者

多元物質科学研究所

福山 博之  

Hiroyuki Fukuyama

材料メンテナンス

現場で、目視で、金属材料への水素侵入をリアルタイム検出

前の画像
次の画像
概要

金属材料に水素が侵入すると、材料の機械的特性が低下し脆性破壊することがある。(水素脆化)水素脆化の発生を事前に予測するためには、材料への水素侵入を検出する必要がある。本技術では、対象となる金属材料に「水素と反応して色が変わる高分子センサー」を成膜することで、材料に侵入した水素を目視で発見できる。高分子センサーは安価かつ容易に成膜可能なため、大型で形状が複雑なインフラ設備にも適用できると期待される。

従来技術との比較

従来、金属中の水素検出には大型で高価な装置を必要としていたため、現場における水素検出は困難であった。本技術の水素センサーは水素を視認可能にするため、既存設備に成膜するだけで水素の侵入を発見できる。

特徴・独自性
  • 従来、金属中の水素検出には大型で高価な装置を必要としていたため、現場における水素検出は困難でした。本技術の水素センサーは水素を視認可能にするため、既存設備に成膜するだけで水素の侵入を発見できます。
  • ・金属材料に侵入した水素をリアルタイムで可視化できます。
  • ・金属の腐食に伴い侵入した微量の水素でも検出できます。
  • ・安価かつ容易に成膜可能なセンサーを使用するため、既存の大型設備にも適用できます。
  • ・材料に侵入した水素を発見することで、水素脆化の防止と材料の長寿命化が期待されます。
実用化イメージ

本技術によって、大型のインフラ材料に侵入した水素を容易に検出できます。既存設備でも、材料表面に水素センサーを成膜すれば材料に侵入した水素を目視で発見できるため、メンテナンスコストの削減が期待できます。

研究者

金属材料研究所

柿沼 洋  

Hiroshi Kakinuma

材料モデル

作物

作物の子実生産を向上させる生殖形質に関する研究

前の画像
次の画像
概要

近年の異常気象の多発により、作物の種子、果実生産の低下が危惧されている。これまでに低温、高温ストレス下で応答する遺伝子群を同定しており、ゲノム編集などにより、温度ストレス下でも生産が可能なシステムを構築する。

従来技術との比較

従来から用いられている遺伝子組換え手法に加え、ゲノム編集技術により実用に供することが可能な遺伝子改変が可能になった。

特徴・独自性
  • 作物生産とその生産物の作物・子実は、食糧、環境、エネルギー、アメニティに応用でき、地球温暖化にある21世紀には人類にとって、様々な面においてこれまで以上に重要度が増加しています。その作物の子実生産を向上させるためには、昨今の激変する環境ストレスに耐性を有する作物の開発は至上命題です。特に環境ストレスに対して弱い受粉・受精の生殖形質を改変し、種子や果実生産を向上させることを目的としています。
実用化イメージ

高温や低温ストレス下で子実生産を左右する遺伝子群を同定しています。収量増を見込める F1雑種品種育成に重要な自家不和合性遺伝子の利用も進め、種苗産業などとの連携が可能です。

研究者

大学院生命科学研究科

渡辺 正夫  

Masao Watanabe

サステナビリティ

サステナブルな製品デザインの特徴を明らかにする

概要

現在、環境や社会などのサステナビリティに配慮した製品が登場していますが、それらの製品デザインのありかたについて、消費者調査、意匠分析、テキスト分析などの手法を用いて明らかとすることを目的とします。

従来技術との比較

消費者調査やテキスト分析を組み合わせることで、製品デザインから受ける特徴を抽出し、効果的なデザイン開発を進めることが可能となります。

特徴・独自性
  • これまで意匠分析、消費者調査などの手法を用いて、新規性の高い製品デザインが消費者や企業にもたらす効果について検討をしてきました。これらの分析手法をサステナビリティに配慮した製品にも応用することで、製品デザインの方向性を定量的に明らかとすることができる点に特徴・独自性が存在します。
実用化イメージ

この研究で得られた知見を活かして、サステナビリティに配慮した製品についてより魅力的な形で消費者に届けることが可能となります。

研究者

大学院経済学研究科

秋池 篤  

Atsushi Akiike

サステナブル農業

ナノバブル:生命科学とサステナブル農業への応用展開

前の画像
次の画像
概要

ナノバブル技術には従来の洗浄と異なる革新的な機能が期待できます。純水に微量の無機イオンを加えることで、長期間安定したナノバブルの製造に成功しました。ナノセルとも呼ぶことができる10nm レベルの微粒子であり、界面活性剤などが必要なく安定的に分散しています。表面に数nm 以下の凹凸構造があり、ナノ特有の機能が期待できます。安全性に優れており、医療やバイオ、農業分野など広範な技術領域で応用できる可能性があります。

従来技術との比較

従来のファインバブルはシャワー洗浄等で注目されているが、具体的機能は未だ不明。東北大学は10nmレベルのナノバブルの製造と測定に成功。単なる洗浄効果を凌駕し、生体や植物に対する広範な機能を有する。

特徴・独自性
  • 10nmレベルのナノ粒子(量子ドット)的な存在である
  • 分散剤を必要とせずに長期に安定している(凝集しない)
  • 生体や植物に対して安全でありながら特異な機能を発揮する
実用化イメージ

未知な領域で新たな機能を発揮させて欲しい。医療・バイオ分野等、素材として取り扱う企業との共同研究を希望。水としての利用が可能であり、他の薬剤との相乗効果を希望する場合、本技術が有効と思われる。

研究者

未来科学技術共同研究センター

高橋 正好  

Takahashi Masayoshi