行のキーワード 324ワード

コンピュータアーキテクチャ

スーパーコンピュータシステム設計とその応用に関する研究

前の画像
次の画像
特徴・独自性
  • 次世代超高性能スーパーコンピュータシステムを実現するハードウェアおよびシステムソフトウェアの要素技術の確立と、スーパーコンピュータシステムの卓越した情報処理能力を最大限に引き出せる高性能シミュレーション技術について研究を進めている。具体的には、3次元デバイスや不揮発メモリなど先進デバイス技術を活用した低消費電力、高メモリバンド幅スーパーコンピュータシステム設計とその利用技術の開発に取り組んでいる。
実用化イメージ

スーパーコンピュータ設計とその応用に関する産学連携研究を進めているが、ものづくりを支えるスーパーコンピュータ向けシミュレーションコードの高度化、高速化を必要とする企業との産学共同研究も可能である。

研究者

大学院情報科学研究科

小林 広明  

Hiroaki Kobayashi

RSウイルス

生物活性の探索をアウトソーシングしませんか - ウイルス・腫瘍・細菌を中心に -

前の画像
次の画像
概要

感染症予防には感染対策、ワクチンもありますが、それらをすり抜けて感染してしまうこともあります。また時間とともに免疫低下も起こりえます。その治療薬を開発しています。

従来技術との比較

主たるウイルス感染症をカバーしています。感染性微生物と用いてスクリーニングします。P3施設が利用できます。

特徴・独自性
  • 当研究室では様々な生物活性探索アッセイ方法を確立しています。その成果として日本たばこ産業と共同開発した抗HIV 剤、エルビテグラビルが臨床応用されています。他にも、新規の作用機序を有する逆転写酵素阻害剤(EFdA) や抗ガン剤(S-FMAU)を開発してきました。具体的には、1)抗ウイルス剤・抗菌剤などの活性評価、2)抗腫瘍活性の測定、3)新たなスクリーニング法の確立などを行います。
実用化イメージ

新たなターゲットに対するhigh through-put screening 確立の受託も可能ですので個別にご相談ください。P3実験施設を必要とする共同開発や他の微生物を含めた学術指導にも応じます。

研究者

災害科学国際研究所

児玉 栄一  

Eiichi Kodama

RNA-seq

金魚を用いたHTP一本鎖抗体取得技術

前の画像
次の画像
概要

コイ科魚類の中で抗体の多様性が最も大きい金魚(スイホウガン)を活用することで、哺乳動物では取得困難な抗体をハイスループット(HTP)に作製することができる。すなわち、免疫後の水泡液から全RNAを精製し、次世代シークエンサーを用いたRNA-seqを行うことで免疫グロブリン(Ig)重鎖および軽鎖の両遺伝子の塩基配列を網羅的に取得するとともに、試験管内で一本鎖抗体を作製することに成功した。

従来技術との比較

従来の特異的抗体の取得ではマウスなどの実験哺乳動物を用いるのが一般的であったが、ヒトGPCRなどに対する抗体は免疫寛容が起こって、しばしば取得が困難であった。金魚(スイホウガン)は少量の抗原タンパク質で、数週間で免疫が完了する。また、水泡液を何回採取しても、再び水泡液量が元に戻るとともに、水泡液内の抗体濃度は何度採取しても一定量であったことから、1個体で継続的な抗体作製が可能である。

特徴・独自性
  • スイホウガンは眼下にリンパ液を含有する水泡を有する愛玩魚であり、実験魚としては用いられてこなかった。キンギョIg遺伝子は他のコイ科魚類(ゼブラフィッシュやコイなどと比較して、可変領域のアミノ酸配列の多様性が大きく、哺乳動物には見られないユニークな一本鎖抗体を作製することができる。
実用化イメージ

CAR-T細胞療法に用いられるscFv(single-chain variable fragment)を簡便に作製できることから、テーラーメイドなscFvを提供するプラットフォームを提供できる。

研究者

グリーン未来創造機構

田丸 浩  

Yutaka Tamaru

RFデバイス

試作コインランドリ −MEMSを中心とする半導体試作共用設備−

前の画像
次の画像
前の動画
次の動画
概要

4 インチ、6インチ、一部8インチのMEMSを中心とした半導体試作開発のための共用設備で、必要な装置を必要なときに時間単位でお使いいただけます。東北大学に蓄積された関連ノウハウが利用可能で、スタッフが試作を最大限支援します。東北大学西澤潤一記念研究センターの2 階スーパークリーンルームのうち、約1,200m2を主に利用しています。装置、料金については、ホームページをご覧ください。

従来技術との比較

経験豊富な10人以上の技術スタッフが支援します。エッチング、成膜などの各プロセスの標準的な加工条件を提供していますので、ご要望に応じた試作がすぐに開始できます。シリコン以外の様々な材料にも対応します。

特徴・独自性
  • MEMS、光学素子、高周波部品などのデバイスのほか、半導体材料開発などに対応します。
  • 試作前、試作途中における、デバイスやプロセスの技術相談にも対応しています。
  • デバイスの実装工程に対応する「プロトタイプラボ」も利用できます。
  • 半導体、計測器、センサなどの歴史を学んでいただける博物館もご覧いただけます。
  • 東北大学半導体テクノロジー共創体の一部として、半導体の研究開発、人材育成を推進しています。
  • 学生、企業技術者向けの半導体人材育成プログラムをオンデマンドで実施しています。
  • 文部科学省マテリアル先端リサーチインフラ(ARIM)事業のメンバーとして、設備とデータの共用に取り組んでいます。
実用化イメージ

2010年の開始以降330社以上の企業が利用しています。MEMS等のデバイスメーカーはもちろん、材料や機械部品、装置メーカーからも利用があります。これまでに約10件の実用化支援事例があります。

研究者

マイクロシステム融合研究開発センター

戸津 健太郎  

Kentaro Totsu

IMRT

深層学習を用いた磁場下の高速線量計算アルゴリズム

前の画像
次の画像
概要

深層学習を用いた磁場下の高速線量計算アルゴリズム
https://www.t-technoarch.co.jp/data/anken_h/T20-199.html

従来技術との比較

特徴・独自性
  •  放射線治療の新たな治療装置として磁場を用いるMR装置と放射線治療装置(Linac)が一体化したMR-Linacが普及し始めている。一方、照射される治療用放射線は装置の発する磁場の影響で曲がるため、影響を考 慮した線量分布から治療計画を作成する必要があるが、既存の方法では計算に時間がかかる点が課題であった。
  •  一般的なConvolution/Superposition などの計算アルゴリズムは高速であるが(約1-2分の計算),磁場の影響を考慮できない。また、高精度のMonte Calro Algorithm などの計算アルゴリズムは磁場の影響を考慮できるが,計算速度が遅い(約10分~20分)。
  •  本発明は深層学習技術を利用して線量計算を行うことで上記課題を解決する。磁場下における高精度かつ高速な線量計算アルゴリズムは現在存在せず、MRIガイド下の放射線治療のために必要不可欠である。
実用化イメージ

・MR-Linac
・強度変調放射線治療(intensity-modulated radiation therapy:IMRT)
・適応放射線治療(Adaptive Radiotherapy:ART)

研究者

病院

角谷 倫之  

Noriyuki Kadoya

ID管理

自動名寄せデータベース技術

前の画像
次の画像
概要

自動名寄せデータベース技術
https://www.t-technoarch.co.jp/data/anken_h/T20-3109.html

従来技術との比較

特徴・独自性
  •  一般的に知られているデータベース技術として、RDB(Relational Data Base)やKVS(Key‑Value Store)があるが、複数システム間で活用するには不便性がある。本発明は、複数のシステムで管理されている関連性のないデータであっても、複雑なテーブル設計や管理を必要とせずに堅牢なデータ管理を行うと共に、効率的な運用を行うことができる名寄システムを提供する。
実用化イメージ

・管理データベース 
・名寄ツール・データクレンジングツール

研究者

災害科学国際研究所

藤井 進  

Susumu Fujii

アイヌ文化

道東太平洋岸の独特な地質にもとづく地域の気候・歴史・産業と海産物

前の画像
次の画像
前の動画
次の動画
概要

千島列島から続く北海道内陸部の火山列と、プレートが沈みこむ千島海溝との中間に位置し、本来海底にあるはずの場所でマグマ活動が無い場所です。しかしなぜか多くの火山岩が露出し、日本列島の地質で唯一起源が異なる特異な地域です。海岸沿いに分布するこの固い地質は、先史時代から現代まで独特の気候や沿岸生態、地域産業、歴史文化を育んできました。

従来技術との比較

漁業、酪農業、海産物といった地域の特有の産業はすべて道東太平洋沿岸のこの特異な地質が起源となっています。これを肌で感じるツーリズムをご提案します。

特徴・独自性
  • 地域の地質が独特の地形と気候をつくり、港湾の位置、酪農の発達、アイヌ文化の拠点、ナガコン分の生息域などすべてをつかさどっています。ここまで地質基盤が現代産業に至るまで規制し、地域の特色を持たせているような場所は他にあまりありません。
実用化イメージ

現地ツーリズムの作成を期待しています。現地の景観は国内では他に類の無い広大なものですし、地場の食材も独特ですばらしいものがあります。

研究者

東北アジア研究センター

平野 直人  

Naoto Hirano

iPS細胞

口腔粘膜由来細胞を利用したiPS細胞の効率的な製造方法

特徴・独自性
  • 本発明は、患者への負担が少なく、しかも高い樹立効率でiPS 細胞を作製する技術を提供することを目的とする。より詳細には、本発明は、口腔粘膜(歯肉)由来の体細胞を利用することによって、誘導多能性幹細胞を高い樹立効率で製造する方法に関する。更に、本発明は、当該製造方法によって作製された誘導多能性幹細胞に関する。
  • また、歯肉由来の細胞を用いることで、iPS 細胞の作製の際にウイルスを用いずに外来遺伝子挿入のないヒトiPS 細胞を、効率的に樹立することが可能である。さらに、ヒト以外の異種成分を含まない培養系を確立するために、iPS 細胞源である同一患者由来の歯肉由来細胞が自己フィーダー細胞として好適であることも明らかにしており、本発明技術を基盤とした移植に安全なiPS 細胞技術が確立されつつある。
実用化イメージ

本発明技術を用いて個々の患者の歯肉から効率的にiPS細胞を作製することによって、医科・歯科領域で期待されているオーダーメイドの再生医療が、より容易かつ効率的となることが想定される。

研究者

大学院歯学研究科

江草 宏  

Hiroshi Egusa

iPS細胞の腫瘍化を抑制することが可能な分化誘導方法

特徴・独自性
  • 本発明は、スタチン系薬剤を用いることにより、iPS 細胞の移植に際して問題となる腫瘍化を抑制する技術である。スタチン系薬剤は、すでにコレステロール低下薬として広く普及している。iPS細胞の移植先における腫瘍化は、iPS細胞の再生医療応用への最大の課題のひとつであるが、細胞ソーティングなどの煩雑な手技を経ずに、スタチンを用いるだけでこの腫瘍化の課題が解決することができれば、iPS 細胞を用いた骨再生医療の実現へ大きく前進することが期待される。
実用化イメージ

本発明は、医科・歯科領域で重要な骨組織再生技術をiPS細胞を用いて可能にすることが想定される。

研究者

大学院歯学研究科

江草 宏  

Hiroshi Egusa

iPS細胞の腫瘍化を抑制することが可能な骨分化誘導方法

前の画像
次の画像
概要

iPS細胞の腫瘍化を抑制することが可能な骨分化誘導方法
https://www.t-technoarch.co.jp/data/anken_h/T18-512.html

従来技術との比較

特徴・独自性
  •  iPS細胞の移植先における腫瘍化は、iPS細胞の再生医療応用への最大の課題のひとつである。本発明はスタチン系薬剤を用いることにより、骨再生におけるiPS細胞の移植に際して問題となる腫瘍化を抑制する技術であり、細胞ソーティングなどの煩雑な手技を経ずに腫瘍化の課題解決に資するため、iPS細胞を用いた骨再生医療の実現へ大きく前進することが期待される。
実用化イメージ

多様な骨関連疾患への展開が可能

研究者

大学院歯学研究科

江草 宏  

Hiroshi Egusa

青色光

青色光を用いた殺虫技術の開発

前の画像
次の画像
特徴・独自性
  • 可視光には複雑な動物に対する致死効果はないとこれまで考えられていたが、その常識を覆し、青色光に殺虫効果があることを明らかにした。LED などの照明装置を用いて、青色光を害虫の発生場所に照射するだけの殺虫方法であるため、クリーンで安全性の高い全く新しいケミカルフリーな害虫防除技術になることが期待される。可視光に殺虫効果があることを発見したのは世界初であり、他に類似のものが全くない独自の技術である。
実用化イメージ

農業、食品産業、畜産業、公衆衛生、一般家庭など様々な分野における害虫防除への利用を想定している。上記用途と関連する業界あるいは照明メーカーとの連携が考えられる。

研究者

大学院農学研究科

堀 雅敏  

Masatoshi Hori

アクチュエータ

MEMS・マイクロマシンと微細加工技術に関する研究

前の画像
次の画像
特徴・独自性
  • 情報機器の入出力や自動車の安全のために用いられるMEMSと呼ばれるマイクロデバイス/システムの研究を行っています。集積化センサ、圧電デバイス、高周波MEMS、過酷環境センサ、マイクロエネルギーデバイス、ウェハレベルパッケージなどの研究に実績があります。リソグラフィ、エッチング、成膜、ウェハ接合、実装、各種評価のための装置を多数揃え、研究者自身が操作して研究できる開かれた実験環境を提供しています。
実用化イメージ

これまでに多くの企業から研究員を受け入れ、産学共同研究を行うとともに、スポット的に装置を利用頂くような支援も積極的に行っています。豊富な資料・データに基づき、随時、技術相談を受け付けています。

研究者

大学院工学研究科

田中 秀治  

Shuji Tanaka

能動ファイバセンサ

前の画像
次の画像
特徴・独自性
  • 本研究における多機能ファイバの特徴として、デバイスに必要な部材を全て内包するプレフォームを設計することで、熱延伸処理によるロール巻き取りが可能である。このため従来技術で問題点となる微細で複雑な積層構造をファイバに新たに追加する必要がなく、量産性も高いため製造コストを大幅に削減することも可能である。さらに容易にファイバの線径を制御して微細化できるため、ウェアラブルデバイスなどにも応用が可能である。
実用化イメージ

応用例として、微小空間でも検査可能な能動カテーテルが挙げられる。光ファイバによるカメラ機能や電気化学センサの付与が可能である。着用者の生体情報を常にセンシングできるウェアラブルデバイスも挙げられる。

研究者

高等研究機構学際科学フロンティア研究所

郭 媛元  

Yuanyuan Guo

巨大磁歪材料の探索と電子状態の実測による磁歪発現機構の解明

前の画像
次の画像
概要

振動発電、アクチュエータ、位置センサ等に磁歪現象が利用されていますが、巨大磁歪材料の磁歪発現機構は解明されていません。そのため、単結晶を作製して磁歪の符号・大きさ、電子状態について結晶方位依存性を測定して磁歪の発現機構を研究しています。電子状態は放射光を用いて共鳴非弾性X線散乱(RIXS)とX線磁気円二色性(XMCD)で測定しています。

従来技術との比較

巨大磁歪材料の磁歪発現機構は解明されておらず、電子状態直接観測と結び付けた研究はありません。

特徴・独自性
  • Fe-Ga系巨大磁歪材料のブリッジマン法等による単結晶試料の作製。
  • 放射光を用いた磁性材料の電子状態の直接的な測定。
  • 磁歪特性と電子状態の結晶方位依存性の測定から巨大磁歪の発現機構の解明。
  • 磁歪の発現機構に基づく材料探索と結晶方位等の組織制御。
  • 輸送特性(電気抵抗や磁気抵抗)の異方性と電子状態との関連付け。
実用化イメージ

巨大磁歪の発現機構を理解して結晶方位等の組織を制御することで、磁歪デバイスの高性能化が期待できます。

研究者

金属材料研究所

梅津 理恵  

Rie Umetsu

亜酸化窒素

気相化学種の同時定量技術・ソフトウェア

前の画像
次の画像
概要

フーリエ変換赤外線分光法 (FT-IR) を用いて、活性酸素・窒素種 (オゾン O3、 過酸化水素 H2O2、 窒素酸化物 (一酸化窒素/二酸化窒素/五酸化二窒素/亜酸化窒素) NOx、 亜硝酸/硝酸 HNOx)や硫黄酸化物 SOx、 一酸化炭素/二酸化炭素 COx等の気相化学種を同時に定量する技術を開発しています。

従来技術との比較

標準ガスを用いた校正曲線からの密度定量は、標準ガスとして入手できない化学種に対応できない等の問題を抱えていました。
本技術は、 標準ガスの校正をせずに、20種を超える化学種の同時定量を可能にします。

特徴・独自性
  • 手軽に1クリックで同時密度定量可能なソフトウェア
  • 化学種の吸収断面積データベースを使用
  • 様々な装置関数や測定条件に対応可能
実用化イメージ

気相化学種を密度定量したいという様々なニーズに対して、直接貢献できる。

研究者

大学院工学研究科

佐々木 渉太  

Shota Sasaki

アジア

アジアにおける対話型環境政策提言の探究 人文学のアプローチを用いて

概要

実効的な環境政策を目指す限り、人々の文化に根ざした「自然観」を政策立案者が理解することは不可避である。そのため、今後の人文学アプローチによる自然観解明の研究は必要とされるだろう。その第一段階として、本プロジェクトを対話型環境政策のプロトタイプとして提示する。

従来技術との比較

現状では、非西洋国がナショナリズムの高揚を目的としたプロパガンダとして、自国文化を「自然と共生する」と礼賛することがある。中国、インド等の東アジアでは顕著であり、日本もその一翼をになっている。このようなマクロ視点の対抗的・競争的な環境政策の対話ではなく、ミクロ視点の協働的対話を目指す。

特徴・独自性
  • 環境分野において政策提言に向けた「フォーラム」を設置するアイデア
  • 各国の文化差を尊重しながら、グローバルな歩調を合わせた環境政策提言を目指す
  • 環境政策の対話の取り組みのフレームワークを提案
実用化イメージ

(特にアジア地域で事業展開をする)企業との共同研究を希望している。従来の法的・政治的配慮としての環境保全計画ではなく、事業地の地域住民との紛争回避のための環境方針の事項的な策定プロセスに寄与したい。

研究者

大学院文学研究科

小松原 織香  

Orika Komatsubara

aceneuramic acid

遠位型ミオパチーに対する治療法の開発

概要

遠位型ミオパチーの一種であるGNEミオパチーは、体幹から離れた部位から筋肉が萎縮、変性し次第に体の自由が奪われていく希少疾病で、指定難病の一つである。本疾患患者ではGNEという酵素の遺伝子に変異がありアセノイラミン酸などシアル酸合成ができない。国立精神・神経医療研究センター疾病研究第一部においてモデルマウスを作製し、アセノイラミン酸の経口投与の予防効果が得られた。

従来技術との比較

2010~2011年に、世界で初めて医師主導治験として第Ⅰ相試験を実施し、安全性を確立した。医師主導第II/III相試験、延長試験、有効性確認試験を経て、2024年3月にノーベルファーマ社が商品名アセノベル®として製造販売承認を取得した。今後は本シーズで培ったレジストリやプロトコル作成のノウハウを活かして他のシアル酸補充やウイルスベクター、酸化的ストレスを標的とした治療開発が進むことが期待される。

特徴・独自性
  • ・2010~2011年に、世界で初めて医師主導治験として第Ⅰ相試験を実施し、安全性を確立した。医師主導第II/III相試験、延長試験、有効性確認試験を経た
  • ・2024年3月にノーベルファーマ社が商品名アセノベル®として製造販売承認を取得した。
  • ・ウルトラオーファンドラッグとして期待される。
実用化イメージ

今後は本シーズで培ったレジストリやプロトコル作成のノウハウを活かして他のシアル酸補充やウイルスベクター、酸化的ストレスを標的とした治療開発が進むことが期待される。

研究者

大学院医学系研究科

青木 正志  

Masashi Aoki

N-アセノイラミン酸

遠位型ミオパチーに対する治療法の開発

概要

遠位型ミオパチーの一種であるGNEミオパチーは、体幹から離れた部位から筋肉が萎縮、変性し次第に体の自由が奪われていく希少疾病で、指定難病の一つである。本疾患患者ではGNEという酵素の遺伝子に変異がありアセノイラミン酸などシアル酸合成ができない。国立精神・神経医療研究センター疾病研究第一部においてモデルマウスを作製し、アセノイラミン酸の経口投与の予防効果が得られた。

従来技術との比較

2010~2011年に、世界で初めて医師主導治験として第Ⅰ相試験を実施し、安全性を確立した。医師主導第II/III相試験、延長試験、有効性確認試験を経て、2024年3月にノーベルファーマ社が商品名アセノベル®として製造販売承認を取得した。今後は本シーズで培ったレジストリやプロトコル作成のノウハウを活かして他のシアル酸補充やウイルスベクター、酸化的ストレスを標的とした治療開発が進むことが期待される。

特徴・独自性
  • ・2010~2011年に、世界で初めて医師主導治験として第Ⅰ相試験を実施し、安全性を確立した。医師主導第II/III相試験、延長試験、有効性確認試験を経た
  • ・2024年3月にノーベルファーマ社が商品名アセノベル®として製造販売承認を取得した。
  • ・ウルトラオーファンドラッグとして期待される。
実用化イメージ

今後は本シーズで培ったレジストリやプロトコル作成のノウハウを活かして他のシアル酸補充やウイルスベクター、酸化的ストレスを標的とした治療開発が進むことが期待される。

研究者

大学院医学系研究科

青木 正志  

Masashi Aoki

アセノベル

遠位型ミオパチーに対する治療法の開発

概要

遠位型ミオパチーの一種であるGNEミオパチーは、体幹から離れた部位から筋肉が萎縮、変性し次第に体の自由が奪われていく希少疾病で、指定難病の一つである。本疾患患者ではGNEという酵素の遺伝子に変異がありアセノイラミン酸などシアル酸合成ができない。国立精神・神経医療研究センター疾病研究第一部においてモデルマウスを作製し、アセノイラミン酸の経口投与の予防効果が得られた。

従来技術との比較

2010~2011年に、世界で初めて医師主導治験として第Ⅰ相試験を実施し、安全性を確立した。医師主導第II/III相試験、延長試験、有効性確認試験を経て、2024年3月にノーベルファーマ社が商品名アセノベル®として製造販売承認を取得した。今後は本シーズで培ったレジストリやプロトコル作成のノウハウを活かして他のシアル酸補充やウイルスベクター、酸化的ストレスを標的とした治療開発が進むことが期待される。

特徴・独自性
  • ・2010~2011年に、世界で初めて医師主導治験として第Ⅰ相試験を実施し、安全性を確立した。医師主導第II/III相試験、延長試験、有効性確認試験を経た
  • ・2024年3月にノーベルファーマ社が商品名アセノベル®として製造販売承認を取得した。
  • ・ウルトラオーファンドラッグとして期待される。
実用化イメージ

今後は本シーズで培ったレジストリやプロトコル作成のノウハウを活かして他のシアル酸補充やウイルスベクター、酸化的ストレスを標的とした治療開発が進むことが期待される。

研究者

大学院医学系研究科

青木 正志  

Masashi Aoki

圧縮強度